洛谷 P1306 斐波那契公约数 题解
结论:gcd(F[n],F[m])=F[gcd(n,m)];
F[n]=a和F[n+1]=b
F[n+2]=a+b,F[n+3]=a+2b,…F[m]=F[m?n?1]a+F[m?n]b
F[n]=a,F[n+1]=b,F[m]=F[m?n?1]a+F[m?n]
F[m]=F[m?n?1]?F[n]+F[m?n]?F[n+1]
gcd(F[n],F[m])=gcd(F[n],F[m?n?1]?F[n]+F[m?n]?F[n+1])
gcd(F[n],F[m])=gcd(F[n],F[m?n]?F[n+1])
引理:gcd(F[n],F[n+1])=1
证明:gcd(F[n],F[n+1])=gcd(F[n],F[n+1]?F[n])=gcd(F[n],F[n?1])=......=gcd(f[1],f[2]);
gcd(F[n],F[n+1])=1;
gcd(F[n],F[m])=gcd(F[n],F[m?n]?F[n+1]);
gcd(F[n],F[m])=gcd(F[n],F[m?n]);
即gcd(F[n],F[m])=gcd(F[n],F[mmodn]);
则gcd(F[n],F[m])=gcd(F[nmodm1],F[m1]);
不难发现,整个递归过程其实就是在求解gcd(n,m)
最后递归到出现F[0],那么此时的f[n]就是答案;
gcd(F[n],F[m])=F[gcd(n,m)];
洛谷 P1306 斐波那契公约数 题解的更多相关文章
- 洛谷 P1306 斐波那契公约数
洛谷 P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? ...
- 洛谷 P1306 斐波那契公约数 解题报告
P1306 斐波那契公约数 题意:求\(Fibonacci\)数列第\(n\)项和第\(m\)项的最大公约数的最后8位. 数据范围:\(1<=n,m<=10^9\) 一些很有趣的性质 引理 ...
- 洛谷——P1306 斐波那契公约数
P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输 ...
- 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质
P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...
- 洛谷P1306 斐波那契公约数
题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【Luogu】P1306 斐波那契公约数 题解
原题链接 嗯...很多人应该是冲着这个标题来的 (斐波那契的魅力) 1.分析题面 点开题目,浏览一遍题目,嗯?这么简单?还是蓝题? 再看看数据范围,感受出题人深深的好意... \(n,m \leq 1 ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P3938 斐波那契
题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...
随机推荐
- C# 动态访问webserver 帮助类
/* 调用方式 * string url = "http://www.webservicex.net/globalweather.asmx" ; * string[] args = ...
- TTTTTTTTTTTTT 树的直径 Codeforces Beta Round #14 (Div. 2) D. Two Paths
tiyi:给你n个节点和n-1条边(无环),求在这个图中找到 两条路径,两路径不相交,求能找的两条路径的长度的乘积最大值: #include <iostream> #include < ...
- sklearn pca降维
PCA降维 一.原理 这篇文章总结的不错PCA的数学原理. PCA主成分分析是将原始数据以线性形式映射到维度互不相关的子空间.主要就是寻找方差最大的不相关维度.数据的最大方差给出了数据的最重要信息. ...
- jQuery_attr()操作
下面来介绍jQuery的属性attr()操作: <!DOCTYPE html> <html> <head> <meta charset="UTF-8 ...
- Remove the Substring
D2. Remove the Substring (hard version) 思路:其实就是贪心吧,先从前往后找,找到 t 可在 s 中存在的最小位置 (pre),再从后往前找,找到 t 可在 s ...
- Android_(菜单)选项菜单
Android系统中菜单分为Options Menu.Context Menu.Sub Men三种 Options Menu和Context Menu属于一级菜单 Sub Menu属于Options ...
- ztree复选框
var setting = { check: { enable: true // chkboxType : { "Y" : "", "N" ...
- LeetCode19----删除链表的指定元素
给定一个链表,删除链表的倒数第 n 个节点,并且返回链表的头结点. 示例: 给定一个链表: 1->2->3->4->5, 和 n = 2. 当删除了倒数第二个节点后,链表变为 ...
- jquery 使用on方法给元素绑定事件
on方法在1.7版本中开始出现的,现在已经优先考虑on,并不是bind方法了. on( events [,selector] [,data] ,handler) event:为事件类型,可以有多个事件 ...
- T84341 Jelly的难题1
T84341 Jelly的难题1 题解 当窝发现窝的锅在读入这个矩阵的时候,窝..窝..窝.. 果然,一遇到和字符串有关的题就开始吹空调 好啦我们说说思路吧 BFS队列实现 拿出一个没有走过的点,扩展 ...