最近群里聊起秒杀和限流,我自己没有做过类似应用,但是工作中遇到过更大的数据和并发。

于是提出了一个简单的模型:

var count = rds.inc(key);

if(count > 1000) throw "已抢光!"

借助Redis单线程模型,它的inc是安全的,确保每次加一,然后返回加一后的结果。如果原来是234,加一了就是235,返回的一定是235,在此中间,不会有别的请求来打断从而导致返回236或者其它。

其实我们可以理解为inc的业务就是占坑排队,每人占一个坑,拿到排队小票后看看是不是超额了,再从业务层面输出秒杀结果,甚至做一些更加复杂的业务。

六条提到限流,可能基于某种考虑,希望把key对应的count给限制在1000附近,可以接受1%偏差。

于是有了改进模型:

var count = rds.inc(key);

if(count > 1000){

rds.dec(key);

throw "超出限额!"

就加了一句,超出限额后,把小票给减回去^_^

采用Redis有一个好处,比如支持很多应用服务器一起抢……

当然,对于很大量的秒杀,这个模型也不一定合理,比如要枪10万部手机,然后来了300万用户,瞬间挤上来。

这里有个变通方法可以试一下,那就是准备10个Redis实例,每个放1万。用户请求过来的时候,可以随机数或者散列取模,找对应实例来进行抢购。

同理可以直接更多用户的场景。总的来说,在数据较大的时候,随机和散列就具有一定统计学意义,相对来说是比较均衡的。

上面是大量秒杀的简单场景,那么小数据场景呢?比如就只有几万并发的场景

小数据场景,单应用实例,可以考虑把Redis都给省了。

初级模型:

Interlocked.Increase(ref count);

if(count >= 1000) throw "抢光啦!"

中级模型:

private volatile Int32 count;

var old = 0;

do {

old = count;

if(old >= 1000) throw "抢光啦!"

}while(Interlocked.CompareExchange(ref count, old + 1, old) != old);

这个CAS原子操作可是好东西,在x86指令集下有专门指令CMPXCHG来处理,在处理器级别确保比较和交换数据的原子性。大多数系统想要迈过10万tps的门槛向100万tps靠齐,就必须得实现无锁操作lock-free,其中CAS是最为简单易懂,尽管有时候有ABA问题,但我们可以找到许多解决办法。

在实际使用场景中,可能有更复杂的需求,那就另当别论,这里只能班门弄斧几个简单易用的模型。

借助Redis做秒杀和限流的思考的更多相关文章

  1. spring中实现基于注解实现动态的接口限流防刷

    本文将介绍在spring项目中自定义注解,借助redis实现接口的限流 自定义注解类 import java.lang.annotation.ElementType; import java.lang ...

  2. 小白也能看懂的Redis教学基础篇——做一个时间窗限流就是这么简单

    不知道ZSet(有序集合)的看官们,可以翻阅我的上一篇文章: 小白也能看懂的REDIS教学基础篇--朋友面试被SKIPLIST跳跃表拦住了 书接上回,话说我朋友小A童鞋,终于面世通过加入了一家公司.这 ...

  3. 使用RateLimiter完成简单的大流量限流,抢购秒杀限流

    RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率. 通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时 ...

  4. 【分布式架构】--- 基于Redis组件的特性,实现一个分布式限流

    分布式---基于Redis进行接口IP限流 场景 为了防止我们的接口被人恶意访问,比如有人通过JMeter工具频繁访问我们的接口,导致接口响应变慢甚至崩溃,所以我们需要对一些特定的接口进行IP限流,即 ...

  5. redis实际应用-限流

    为什么要做限流 首先让我们先看一看系统架构设计中,为什么要做"限流". 旅游景点通常都会有最大的接待量,不可能无限制的放游客进入,比如故宫每天只卖八万张票,超过八万的游客,无法买票 ...

  6. 浅谈 OpenResty,基于opebresty+redis进行实时线上限流

    一.前言 我们都知道Nginx有很多的特性和好处,但是在Nginx上开发成了一个难题,Nginx模块需要用C开发,而且必须符合一系列复杂的规则,最重要的用C开发模块必须要熟悉Nginx的源代码,使得开 ...

  7. springboot + aop + Lua分布式限流的最佳实践

    整理了一些Java方面的架构.面试资料(微服务.集群.分布式.中间件等),有需要的小伙伴可以关注公众号[程序员内点事],无套路自行领取 一.什么是限流?为什么要限流? 不知道大家有没有做过帝都的地铁, ...

  8. nginx 、springMvc(非分布式)相应的限流、消峰

    互联网服务赖以生存的根本是流量, 产品和运营会经常通过各种方式来为应用倒流,比如淘宝的双十一等,如何让系统在处理高并发的同时还是保证自身系统的稳定, 通常在最短时间内提高并发的做法就是加机器, 但是如 ...

  9. 简易RPC框架-客户端限流配置

    *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...

随机推荐

  1. this问题

    this问题 弹出层是一种很常见的页面显示部件,利用require js的模块化可以使部分功能组件重用性更高.以弹出层为例,探讨关于this的问题 首先来看这样一段代码 Html部分代码 <bo ...

  2. 微信小程序各类型的自定义组件篇

    由于本人最近在开发小程序项目,期间对小程序有花点时间去研究,同时也找了网上大牛的一些案例,在这里分享部分自定义组件,部分代码是copy大牛案例的,有对小程序有兴趣的伙伴拿走,不谢! 源码下载地址:ht ...

  3. iOS 计时器三种定时器的用法NSTimer、CADisplayLink、GCD

    原文:http://www.cocoachina.com/ios/20160919/17595.html DEMO链接

  4. 三菱Q系列PLC的智能功能模块程序

    一.模拟量输入模块Q64AD 1.模块开关或者参数设置 1.1I/O分配 1.2开关设置使用通道1,0-5v, 1.3使用GX configurator设置自动刷新PLC设置智能功能模块参数,即将模拟 ...

  5. bzoj 1492: [NOI2007]货币兑换Cash

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

  6. bzoj 2298: [HAOI2011]problem a

    Description 一次考试共有n个人参加,第i个人说:"有ai个人分数比我高,bi个人分数比我低."问最少有几个人没有说真话(可能有相同的分数) Input 第一行一个整数n ...

  7. PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(2)

    1, 对Universal Recommender进行pio build成功,但是却提示No engine found Building and delpoying model [INFO] [Eng ...

  8. userdel 命令详解

    userdel  作用: 删除指定用户,以及用户相关的文件. 如不加选项,则仅删除用户账号,而不删除相关文件 选项: -f:强制删除用户,即时用户当前已登录 -r:删除用户的同时删除与用户相关的所有文 ...

  9. redis咋么实现分布式锁,redis分布式锁的实现方式,redis做分布式锁 积极正义的少年

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

  10. gitlab 本地 定时备份

    =============================================== 20171015_第1次修改                       ccb_warlock === ...