UVa 10341 - Solve It【经典二分,单调性求解】
原题:
Solve the equation:
p*e-x + q*sin(x) + r*cos(x) + s*tan(x) + t*x2 + u = 0
where 0 <= x <= 1.
Input
Input consists of multiple test cases and terminated by an EOF. Each test case consists of 6 integers in a single line: p, q, r, s, t and u(where 0 <= p,r <= 20 and -20 <= q,s,t <=
0). There will be maximum 2100 lines in the input file.
Output
For each set of input, there should be a line containing the value of x, correct upto 4 decimal places, or the string "No solution", whichever is applicable.
Sample Input
0 0 0 0 -2 1
1 0 0 0 -1 2
1 -1 1 -1 -1 1
Sample Output
0.7071
No solution
0.7554
#include <bits/stdc++.h>
using namespace std;
const double eps=1e-;
double p,q,r,s,t,u;
double gcd(double x)
{
return p*exp(-x)+q*sin(x)+r*cos(x)+s*tan(x)+t*pow(x,)+u;
}
int main()
{
while(scanf("%lf%lf%lf%lf%lf%lf",&p,&q,&r,&s,&t,&u)!=EOF)
{
double l=0.0,r=1.0,mid;
if(gcd(l)*gcd(r)>)
{
printf("No solution\n");
continue;
}
while(l+eps<=r)
{
mid=(l+r)/;
if(gcd(l)*gcd(mid)>)
l=mid;
else r=mid;
}
printf("%.4lf\n",mid);
}
return ;
}
UVa 10341 - Solve It【经典二分,单调性求解】的更多相关文章
- UVA 10341 Solve It 解方程 二分查找+精度
题意:给出一个式子以及里面的常量,求出范围为[0,1]的解,精度要求为小数点后4为. 二分暴力查找即可. e^(-n)可以用math.h里面的exp(-n)表示. 代码:(uva该题我老是出现Subm ...
- UVA 10341 Solve It 二分
题目大意:给6个系数,问是否存在X使得等式成立 思路:二分.... #include <stdio.h> #include <math.h> #define EEE 2.718 ...
- 【数值方法,水题】UVa 10341 - Solve It
题目链接 题意: 解方程:p ∗ e^(−x) + q ∗ sin(x) + r ∗ cos(x) + s ∗ tan(x) + t ∗ x^2 + u = 0 (0 <= x <= 1) ...
- UVA 10341.Solve It-二分查找
二分查找 二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序 ...
- UVa 10341 - Solve It
题目:给一个方程,求解方程的解.已给出解的范围,并且可知方程等号左侧的函数是递减的,可用二分法进行试探,直到得出给定误差范围内的解. #include <cstdio> #include ...
- UVA.10986 Fractions Again (经典暴力)
UVA.10986 Fractions Again (经典暴力) 题意分析 同样只枚举1个,根据条件算出另外一个. 代码总览 #include <iostream> #include &l ...
- UVa 10341 (二分求根) Solve It
很水的一道题,因为你发现这个函数是单调递减的,所以二分法求出函数的根即可. #include <cstdio> #include <cmath> //using namespa ...
- UVA 10341 二分搜索
Solve the equation:p ∗ e−x + q ∗ sin(x) + r ∗ cos(x) + s ∗ tan(x) + t ∗ x2 + u = 0where 0 ≤ x ≤ 1.In ...
- UVA 10668 - Expanding Rods(数学+二分)
UVA 10668 - Expanding Rods 题目链接 题意:给定一个铁棒,如图中加热会变成一段圆弧,长度为L′=(1+nc)l,问这时和原来位置的高度之差 思路:画一下图能够非常easy推出 ...
随机推荐
- socket编程部分API
以TCP协议为例,UNIX的相关API int socket(int domain , int type , int protocol); 根据指定的地址族,数据类型,协议来分配一个socket的描述 ...
- iOS App3D Touch快捷键的静态以及动态设置详细使用
1. 功能支持 3D-Touch 只在 iOS 9 及以上版本得到支持,之前版本的 iOS 并不支持该功能:3D-Touch 只在 iPhone 6s 及以后型号的 iPhone 或 iPad Pro ...
- iOS 本地项目上传github,github管理项目配置
一.注册github账号 首先需要注册一个github账号,注册地址:https://github.com 接着会来到这 然后会收到一封github发的邮件,进入邮箱验证 二.创建个人的githu ...
- C#基础在using中创建对象
在using中创建的对象的类必须是实现了IDispose接口的类,示例代码如下: static void Main(string[] args) { Method(); Console.WriteLi ...
- Java中 &&与&,||与|的区别
区别 && || 是逻辑运算,支持短路运算 & | 是位运算,不支持短路运算 短路运算 当有多个表达式时,左边的表达式值可以确定结果时,就再继续运算右边的表达式的值; 举例 ...
- CDQ分治与整体二分小结
前言 这是一波强行总结. 下面是一波瞎比比. 这几天做了几道CDQ/整体二分,感觉自己做题速度好慢啊. 很多很显然的东西都看不出来 分治分不出来 打不出来 调不对 上午下午晚上的效率完全不一样啊. 完 ...
- alias 命令详解
alias 命令 作用: 设置命令别名,可以将较长的命令进行简化,使用alias 时,用户必须使用单引号将原来的命令引起来,防止特殊字符导致错误. 如要永久生效则将alias 命令存放到bash 的 ...
- 1、opencv-2.4.7.2的安装和vs2010的配置
参考大牛们的资料,动手操作了一遍,不算太复杂,和vs2008不同,有几点需要注意,cv2.4.7.2版本没有vc9,所以无法在2008上使用(呵呵,我瞎猜的) 1.下载安装 下载http://sour ...
- (一)初识mybatis
Mybatis 是现在很多公司都选择使用的一个ORM(Object Relational Mapping)框架,所以是值得了解和学习一番的. MyBatis 是支持定制化 SQL.存储过程以及高级映射 ...
- 活动倒计时-兼容ios
最近要做一个活动,需要用倒计时,写好之后再IOS上无效,经过百度知道了,原来IOS不能识别格式"2017-11-09 --",所以要进行转换才有效 直接上代码了: <!DOC ...