本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest Boosting四种分类器的特点与分类方法,参考材料为密歇根大学Ji Zhu的pdf与组会上王博的讲解。

  • CART(Classification And Regression Tree)
         Breiman, Friedman, Olshen & Stone (1984), Quinlan (1993)
         思想:递归地将输入空间分割成矩形
         优点:可以进行变量选择,可以克服missing data,可以处理混合预测
         缺点:不稳定
 
     example:
对于下面的数据,希望分割成红色和绿色两个类,原本数据生成是这样的:
Red class: x1^2+x2^2>=4.6
Green class: otherwise
 
经过不断分割可以得到最后的分类树:
 
 
  • 那么怎么分割才是最好的呢?即怎样将输入空间分割成矩形是最佳策略呢?这里一般采用三中评价标准策略:
分裂时,找到使不纯度下降最快的分裂变量和分裂点。
 
  • 从结果可以看出CART可以通过变量选择迭代地建立一棵分类树,使得每次分类平面能最好地将剩余数据分为两类。
  • classification tree非常简单,但是经常会有noisy classifiers. 于是引入ensemble classifiers: bagging, random forest, 和boosting。
一般的, Boosting > Bagging > Classification tree(single tree)
 
 
 
 
 
 
  • Bagging (Breiman1996): 也称bootstrap aggregation

Bagging的策略:

- 从样本集中用Bootstrap采样选出n个样本

- 在所有属性上,对这n个样本建立分类器(CART or SVM or ...)

- 重复以上两步m次,i.e.build m个分类器(CART or SVM or ...)

- 将数据放在这m个分类器上跑,最后vote看到底分到哪一类

Fit many large trees to bootstrap resampled versions of the training data, and classify by majority vote.

下图是Bagging的选择策略,每次从N个数据中采样n次得到n个数据的一个bag,总共选择B次得到B个bags,也就是B个bootstrap samples.
 
 
 
 
 
 
 
  • Random forest(Breiman1999):
随机森林在bagging基础上做了修改。
 

- 从样本集中用Bootstrap采样选出n个样本,预建立CART

- 在树的每个节点上,从所有属性中随机选择k个属性,选择出一个最佳分割属性作为节点

- 重复以上两步m次,i.e.build m棵CART

- 这m个CART形成Random Forest

 
这里的random就是指
         1. Bootstrap中的随机选择子样本   
         2. Random subspace的算法从属性集中随机选择k个属性,每个树节点分裂时,从这随机的k个属性,选择最优的
 
结果证明有时候Random Forest比Bagging还要好。今天微软的Kinect里面就采用了Random Forest,相关论文Real-time Human Pose Recognition in Parts from Single Depth Images是CVPR2011的best paper。
 
 
 
 
 
 
  • Boosting(Freund & Schapire 1996):

Fit many large or small trees to reweighted versions of the training data. Classify by weighted majority vote.

首先给个大致的概念,boosting在选择hyperspace的时候给样本加了一个权值,使得loss function尽量考虑那些分错类的样本(i.e.分错类的样本weight大)。

怎么做的呢?

- boosting重采样的不是样本,而是样本的分布,对于分类正确的样本权值低,分类错误的样本权值高(通常是边界附近的样本),最后的分类器是很多弱分类器的线性叠加(加权组合),分类器相当简单。

AdaBoost和RealBoost是Boosting的两种实现方法。general的说,Adaboost较好用,RealBoost较准确。

下面是AdaBoost进行权值设置与更新的过程:

以下是几个算法的性能比较:

对于多类分类(Multi-class),generalization~是类似的过程:

比如对数据进行K类分类,而不通过每次二类分类总共分K-1次的方法,我们只需要每个弱分类器比random guessing好(i.e. 准确率>1/K)

多类分类算法流程:

多类分类器loss function的设计:

===============补充===============

数据挖掘的十大算法,以后可以慢慢研究:

C4.5

K-Means

SVM

Apriori

EM

PageRank

AdaBoost

kNN

NaiveBayes

CART

===============总结===============

Boosting可以进行变量选择,所以最开始的component可以是简单变量。

Boosting可能会overfit,因此在比较早的时候就停下来是正则化boosting的一个方法。

统计学习方法——CART, Bagging, Random Forest, Boosting的更多相关文章

  1. paper 85:机器统计学习方法——CART, Bagging, Random Forest, Boosting

    本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...

  2. 7. Bagging & Random Forest

    通过前面集成学习的介绍我们知道,欲得到泛化性能强的集成学习器,集成中个体学习器应尽量相互独立:虽然“独立”在现实任务中无法做到,但可以设法使基学习器尽可能具有较大差异. 1. Bagging 自助采样 ...

  3. 统计学习方法 | 第1章 统计学习方法概论 | np.random.rand()函数

    np.random.rand()函数 语法: np.random.rand(d0,d1,d2……dn) 注:使用方法与np.random.randn()函数相同 作用: 通过本函数可以返回一个或一组服 ...

  4. bagging,random forest,boosting(adaboost、GBDT),XGBoost小结

    Bagging 从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping(有放回)的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中).共进行 ...

  5. 随机森林(Random Forest),决策树,bagging, boosting(Adaptive Boosting,GBDT)

    http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 ...

  6. 机器学习方法(六):随机森林Random Forest,bagging

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 前面机器学习方法(四)决策树讲了经典 ...

  7. Ensemble Learning 之 Bagging 与 Random Forest

    Bagging 全称是 Boostrap Aggregation,是除 Boosting 之外另一种集成学习的方式,之前在已经介绍过关与 Ensemble Learning 的内容与评价标准,其中“多 ...

  8. Bootstrap,Bagging and Random Forest Algorithm

    Bootstrap Method:在统计学中,Bootstrap从原始数据中抽取子集,然后分别求取各个子集的统计特征,最终将统计特征合并.例如求取某国人民的平均身高,不可能测量每一个人的身高,但却可以 ...

  9. Aggregation(1):Blending、Bagging、Random Forest

    假设我们有很多机器学习算法(可以是前面学过的任何一个),我们能不能同时使用它们来提高算法的性能?也即:三个臭皮匠赛过诸葛亮. 有这么几种aggregation的方式: 一些性能不太好的机器学习算法(弱 ...

随机推荐

  1. java TreeSet 应用

    本文主要是介绍一下java集合中的比较重要的Set接口下的可实现类TreeSet TreeSet类,底层用二叉树的数据结构 * 集合中以有序的方式插入和抽取元素. * 添加到TreeSet中的元素必须 ...

  2. java多线程sleep和wait方法的区别

    分别创建了三个类,一个测试类,两个线程类实现Runnable接口. 当有notify()唤醒线程时,执行的结果如下: 当把TestSleepaWait.class.notify();语句注释后,即没有 ...

  3. 阿里 java学习之路

    https://maimai.cn/article/detail?fid=96107193&push_id=5603&share_user=http%3A%2F%2Fi9.taou.c ...

  4. 处理 Vue 单页面应用 SEO 的另一种思路

    vue-meta-info 官方地址: monkeyWangs/vue-meta-info (设置vue 单页面meta info信息,如果需要单页面SEO,可以和 prerender-spa-plu ...

  5. LVS-DR实现web调度模式

    author:JevonWei 版权声明:原创作品 实现LVS-DR调度web模式 拓扑环境 网络环境 RS1 RIP 192.168.198.138/24 VIP 192.168.198.100/3 ...

  6. 【Linux相识相知】yum的配置使用和程序包的编译安装

    在上一篇博客中,写到了如何使用rpm命令来安装.卸载软件等,但是大家都知道,各个软件包之间可能存在依赖关系,如果安装某个软件需要额外的依赖其他若干的包,那么我们就需要将其他额外的包一个一个的安装上去, ...

  7. 开源的API集成测试工具 v0.1.2 - 增强体验

    Hitchhiker 是一款开源的 Restful Api 集成测试工具,你可以在轻松部署到本地,和你的team成员一起管理Api. 详细介绍请看: http://www.cnblogs.com/br ...

  8. sqlserver自定义函数

    标量函数 RETURNS 子句指定一种标量数据类型,则函数为标量值函数. 语法 Create function 函数名(参数) Returns 返回值数据类型 [with {Encryption | ...

  9. 2017 ACM/ICPC Asia Regional Shenyang Online spfa+最长路

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

  10. angular之scope.$watch

    某“大神”挖了个陨石坑,我于是乎似懂非懂的接手,玩了一个月angular.现在项目告一段落,暂别了繁重的重复性工作,可以开始回顾.认真的折腾下之前犹抱琵琶的angular. angular吸引人的特性 ...