Python操作csv文件
1.什么是csv文件
The so-called CSV (Comma Separated Values) format is the most common import and export format for spreadsheets and databases. CSV format was used for many years prior to attempts to describe the format in a standardized way in RFC 4180.
2.csv文件缺点
The lack of a well-defined standard means that subtle differences often exist in the data produced and consumed by different applications. These differences can make it annoying to process CSV files from multiple sources. Still, while the delimiters and quoting characters vary, the overall format is similar enough that it is possible to write a single module which can efficiently manipulate such data, hiding the details of reading and writing the data from the programmer.
3.python模块csv.py
The csv module implements classes to read and write tabular data in CSV format. It allows programmers to say, “write this data in the format preferred by Excel,” or “read data from this file which was generated by Excel,” without knowing the precise details of the CSV format used by Excel. Programmers can also describe the CSV formats understood by other applications or define their own special-purpose CSV formats.
the csv module’s reader and writer objects read and write sequences. Programmers can also read and write data in dictionary form using the DictReader and DictWriter classes
reader(csvfile[, dialect='excel'][, fmtparam])
csvfile
需要是支持迭代(Iterator)的对象,并且每次调用next方法的返回值是字符串(string),通常的文件(file)对象,或者列表(list)对象都是适用的,如果是文件对象,打开是需要加"b"标志参数。
dialect
编码风格,默认为excel方式,也就是逗号(,)分隔,另外csv模块也支持excel-tab风格,也就是制表符(tab)分隔。其它的方式需要自己定义,然后可以调用register_dialect方法来注册,以及list_dialects方法来查询已注册的所有编码风格列表。
fmtparam
格式化参数,用来覆盖之前dialect对象指定的编码风格。
参数解释:
delimiter:设置分隔符
quotechar:设置引用符
quoting:引号选项,有4种不同的引号选项
在csv模块中定义为四个变量:
QUOTE_ALL不论类型是什么,对所有字段都加引号。
QUOTE_MINIMAL对包含特殊字符的字段加引号(所谓特殊字符是指,对于一个用相同方言和选项配置的解析器,可能会造成混淆的字符)。这是默认选项。
QUOTE_NONNUMERIC对所有非整数或浮点数的字段加引号。在阅读器中使用时,不加引号的输入字段会转换为浮点数。
QUOTE_NONE输出中所有内容都不加引号。在阅读器中使用时,引号字符包含在字段值中(正常情况下,它们会处理为定界符并去除)。
import csv def testReader(file):
with open(file, 'r') as csvfile:
spamreader = csv.reader(csvfile, delimiter=',')
for row in spamreader:
print(', '.join(row)) if __name__ == '__main__':
csvFile = 'test.csv'
testReader(csvFile)
writer(csvfile[, dialect='excel'][, fmtparam])
参数表(略: 同reader, 见上)
def testWriter(file):
with open(file, 'w') as csvfile:
spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
spamwriter.writerow(['Spam'] * 5 + ['Baked Beans'])
spamwriter.writerow(['Spam', 'Lovely Spam', 'Wonderful Spam'])
DictReader(f,fieldnames = None,restkey = None,restval = None,dialect ='excel',* args,** kwds )
创建一个像常规阅读器一样操作的对象,但将每一行中的信息映射到一个OrderedDict 由可选的fieldnames参数给出的键。
字段名的参数是一个序列。如果省略字段名称,文件f的第一行中的值将用作字段名称。无论字段名称如何确定,有序字典保留其原始排序。
如果一行的字段数超过了字段名,剩下的数据将被放在一个列表中,并与restkey(默认为None)指定的字段名一起存储。如果非空行的字段数少于字段名,则缺少的值将被填入None。
def testDictReader(file):
# 院系,专业,年级,学生类别,班级,学号,姓名,学分成绩,更新时间,班级排名,参与班级排名总人数
with open(file, 'rb') as csvfile:
dictreader = csv.DictReader(csvfile)
for row in dictreader:
print(' '.join([row['院系'], row['专业'], row['学号'], row['姓名']]))
DictWriter(f,fieldnames,restval =“,extrasaction ='raise',dialect ='excel',* args,** kwds )
创建一个像普通writer一样运行的对象,但将字典映射到输出行上。的字段名的参数是一个sequence标识,其中在传递给字典值的顺序按键的writerow()方法被写入到文件 ˚F。可选的restval参数指定字典缺少字段名中的键时要写入的值。如果传递给该writerow()方法的字典包含在字段名称中未找到的键 ,则可选的extrasaction参数指示要执行的操作。如果设置为'raise'默认值,ValueError 则为a 。如果设置为'ignore',字典中的额外值将被忽略。任何其他可选或关键字参数都传递给底层 writer实例。
请注意,与DictReader类不同,fieldnames参数DictWriter不是可选的。由于Python的dict 对象未被排序,因此没有足够的可用信息推导出行应该写入文件f的顺序。
def testDictWriter(file):
with open(file, 'w') as csvfile:
fieldnames = ['院系', '专业', '年级', '学生类别', '班级', '学号']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
writer.writerow(
{'院系': '信息学院', '专业': '计算机科学与技术', '年级': '2011级', '学生类别': '本科(本科)4年', '班级': '计算机11', '学号': '201101245'})
writer.writerow(
{'院系': '信息学院', '专业': '计算机科学与技术', '年级': '2011级', '学生类别': '本科(本科)4年', '班级': '计算机11', '学号': '201101275'})
4.示例代码
csv文件的拷贝
def copycsv(source, target):
csvtarget = open(target, 'w+')
with open(source, 'r') as csvscource:
reader = csv.reader(csvscource, delimiter=',')
for line in reader:
writer = csv.writer(csvtarget, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
writer.writerow(line)
csvtarget.close()
5.其他方式(numpy,pandas)
import numpy
my_matrix = numpy.loadtxt(open("num.csv", "rb"), delimiter=",", skiprows=0)
print(my_matrix)
import pandas as pd
obj=pd.read_csv('test.csv')
print obj
print type(obj)
print obj.dtypes
test.csv
院系,专业,年级,学生类别,班级,学号,姓名,学分成绩,更新时间,班级排名,参与班级排名总人数
信息学院,计算机科学与技术,2011级,本科(本科)4年,计算机11,201101244,栾,86.72,2017/9/5 9:59,1,27
信息学院,计算机科学与技术,2011级,本科(本科)4年,计算机11,201101237,刘,86.05,2017/9/5 9:59,2,27
信息学院,计算机科学与技术,2011级,本科(本科)4年,计算机11,201101233,刘,86.03,2017/9/5 9:59,3,27
信息学院,计算机科学与技术,2011级,本科(本科)4年,计算机11,201101250,李,85.43,2017/9/5 9:59,4,27
信息学院,计算机科学与技术,2011级,本科(本科)4年,计算机11,201101229,张,82.35,2017/9/5 9:59,5,27
信息学院,计算机科学与技术,2011级,本科(本科)4年,计算机11,201101241,韩,80.92,2017/9/5 9:59,6,27
信息学院,计算机科学与技术,2011级,本科(本科)4年,计算机11,201101232,丁,80.66,2017/9/5 9:59,7,27
信息学院,计算机科学与技术,2011级,本科(本科)4年,计算机11,201101228,张,79.61,2017/9/5 9:59,8,27
信息学院,计算机科学与技术,2011级,本科(本科)4年,计算机11,201101255,孟,79.55,2017/9/5 9:59,9,27
num.csv
1,2,3
4,5,6
7,8,9
6.完整代码
# coding:utf-8 import csv def testReader(file):
with open(file, 'r') as csvfile:
spamreader = csv.reader(csvfile, delimiter=',')
for row in spamreader:
print(', '.join(row)) def testWriter(file):
with open(file, 'w') as csvfile:
spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
spamwriter.writerow(['Spam'] * 5 + ['Baked Beans'])
spamwriter.writerow(['Spam', 'Lovely Spam', 'Wonderful Spam']) def copycsv(source, target):
csvtarget = open(target, 'w+')
with open(source, 'r') as csvscource:
reader = csv.reader(csvscource, delimiter=',')
for line in reader:
writer = csv.writer(csvtarget, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
writer.writerow(line)
csvtarget.close() def testDictReader(file):
# 院系,专业,年级,学生类别,班级,学号,姓名,学分成绩,更新时间,班级排名,参与班级排名总人数
with open(file, 'rb') as csvfile:
dictreader = csv.DictReader(csvfile)
for row in dictreader:
print(' '.join([row['院系'], row['专业'], row['学号'], row['姓名']])) def testDictWriter(file):
with open(file, 'w') as csvfile:
fieldnames = ['院系', '专业', '年级', '学生类别', '班级', '学号']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
writer.writerow(
{'院系': '信息学院', '专业': '计算机科学与技术', '年级': '2011级', '学生类别': '本科(本科)4年', '班级': '计算机11', '学号': '201101245'})
writer.writerow(
{'院系': '信息学院', '专业': '计算机科学与技术', '年级': '2011级', '学生类别': '本科(本科)4年', '班级': '计算机11', '学号': '201101275'}) def testpandas_csv():
import pandas as pd obj = pd.read_csv('test.csv')
print obj
print type(obj)
print obj.dtypes def testnumpy_csv():
import numpy my_matrix = numpy.loadtxt(open("num.csv", "rb"), delimiter=",", skiprows=0)
print(my_matrix) if __name__ == '__main__':
# csvFile = 'test.csv'
# testReader(csvFile) # csvFile = 'test2.csv'
# testWriter(csvFile) # copycsv('test.csv', 'testcopy.csv') # testDictReader('test.csv') # testDictWriter('test2.csv')
testnumpy_csv() # testpandas_csv()
Python操作csv文件的更多相关文章
- 数学建模之Python操作csv文件
1.用Python通过csv文件里面的某一列,形成键值,然后统计键在其他列出现的次数. import pandas as pd import numpy as np import csv import ...
- python操作txt文件中数据教程[3]-python读取文件夹中所有txt文件并将数据转为csv文件
python操作txt文件中数据教程[3]-python读取文件夹中所有txt文件并将数据转为csv文件 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 python操作txt文件中 ...
- Python对csv文件的读写操作
python内置了csv模块,用它可以方便的操作csv文件. 1.写文件 (1)写文件的方法一 import csv # open 打开文件有多种模式,下面是常见的4种 # r:读数据,默认模式 # ...
- python中操作csv文件
python中操作csv文件 读取csv improt csv f = csv.reader(open("文件路径","r")) for i in f: pri ...
- python操作csv和excel文件
1.操作csv文件 1).读取文件 import csv f=open("test.csv",'r') t_text=csv.reader(f) for t,i in t_text ...
- Python处理csv文件
Python处理csv文件 CSV(Comma-Separated Values)即逗号分隔值,可以用Excel打开查看.由于是纯文本,任何编辑器也都可打开.与Excel文件不同,CSV文件中: 值没 ...
- 使用Python读写csv文件的三种方法
Python读写csv文件 觉得有用的话,欢迎一起讨论相互学习~Follow Me 前言 逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是 ...
- python读写csv文件
文章链接:https://www.cnblogs.com/cloud-ken/p/8432999.html Python读写csv文件 觉得有用的话,欢迎一起讨论相互学习~Follow Me 前言 逗 ...
- python操作txt文件中数据教程[4]-python去掉txt文件行尾换行
python操作txt文件中数据教程[4]-python去掉txt文件行尾换行 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文章 python操作txt文件中数据教程[1]-使用pyt ...
随机推荐
- [2013-02-22]info入门FAQ
linux相关的东西,入门最快捷,最通用的方式无非查阅帮助文档. man命令很好理解,就不讲了,这里就提几个info相关的FAQ(也就3点啦) 基本操作,如何入门info 首先,输入info命令 ,进 ...
- Linux下C/C++和lua交互-Table
本来这些文章都是在我的个人网站www.zhangyi.studio,目前处在备案状态,暂时访问不了,所以搬到这边. 最近这两天需要弄清楚C++和lua间相互调用和数据传递,废话不多说,直接上过程. ...
- jmeter系列-------脚本编写格式
1.通常会将用户和服务器的一次交互(页面访问或者提交)请求放在一个简单控制器或者事务控制器,例如微课首页里面包含4个接口都放到简单控制器里 或者一个提交可能,会触发3个接口,那么这3个接口放到一个简单 ...
- 【Ztree】前台展示多级菜单,后台配置方法
第一步.前台HTML页面. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind=" ...
- 多线程编程学习一(Java多线程的基础).
一.进程和线程的概念 进程:一次程序的执行称为一个进程,每个 进程有独立的代码和数据空间,进程间切换的开销比较大,一个进程包含1—n个线程.进程是资源分享的最小单位. 线程:同一类线程共享代码和数据空 ...
- js封装成插件-------Canvas统计图插件编写
之前就说过,我想写一个canvas画统计图的插件,现在写好了 先说下实现的功能吧: 1.可以通过自定义X轴坐标属性和Y轴坐标属性按比例画出统计图 2.可以选择画折现图还是柱形统计图,或者两者都实现 3 ...
- 关联本地文件夹到github项目
git init git remote add origin https://自己的仓库url地址 git status git add . git commit -m '[提交内容的描述]' 先 p ...
- spring 发邮件
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt116 Spring邮件抽象层的主要包为org.springframework ...
- Ubuntu下安装NVIDIA显卡驱动的教训
今天在ubuntu16.04版本下安装了NVIDIA的显卡驱动,真的是一波十六折: 首先是在英伟达的官网上查找你自己电脑的显卡型号然后下载相应的驱动. 网址:http://www.nvidia.cn/ ...
- JSONP(Json with padding)
JSONP:一种非官方跨域数据交互协议 JSONP怎么产生的 JSONP的原理 看上面的来源加以理解 上面说过了,script是不受跨域影响的 那么我们可以在我们代码中引用B服务器的文件 <sc ...