bzoj1001(对偶图最短路)
1001: [BeiJing2006]狼抓兔子
Description

Input
Output
输出一个整数,表示参与伏击的狼的最小数量.
Sample Input
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
Sample Output
显然是个最大流问题。
边数达到了10^6级别,显然用dinic算法会TLE
对于一个平面图来说,当然用对偶图的最短路来求最小割(最大流)
SPFA转移的时候注意判断边界情况
应该要开longlong才能过
上代码:
/**************************************************************
Problem: 1001
User: xialan
Language: C++
Result: Accepted
Time:5648 ms
Memory:56480 kb
****************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<climits>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
typedef long long LL;
inline LL read(){
LL x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){
x=x*+ch-'';
ch=getchar();
}
return x;
}
struct edge{
int x,y;bool f;
};
queue<edge>q;
const int M=;
const LL MM=(LL)1e15;
LL dis[M][M][],hang[M][M],lie[M][M],xie[M][M],vis[M][M][];
int main(){
int n,m;
scanf("%d%d",&n,&m);
rep(i,,n)rep(j,,m-)hang[i][j]=read();
rep(i,,n-)rep(j,,m)lie[i][j]=read();
rep(i,,n-)rep(j,,m-)xie[i][j]=read();
rep(i,,n-)rep(j,,m-)dis[i][j][]=dis[i][j][]=MM;
memset(vis,,sizeof(vis));
rep(i,,m-){
dis[][i][]=hang[][i];
vis[][i][]=;
q.push((edge){,i,});
}
dis[][m-][]=min(hang[][m-],lie[][m]);
q.push((edge){,m-,});
vis[][m-][]=;
rep(i,,n-){
dis[i][m-][]=lie[i][m];
vis[i][m-][]=;
q.push((edge){i,m-,});
} while(!q.empty()){
edge u=q.front();q.pop();vis[u.x][u.y][u.f]=;
if(u.f){
if(u.x>){
if(dis[u.x-][u.y][]>dis[u.x][u.y][]+hang[u.x][u.y]){
dis[u.x-][u.y][]=dis[u.x][u.y][]+hang[u.x][u.y];
if(!vis[u.x-][u.y][]){
vis[u.x-][u.y][]=;
q.push((edge){u.x-,u.y,});
}
}
}
if(u.y<m-){
if(dis[u.x][u.y+][]>dis[u.x][u.y][]+lie[u.x][u.y+]){
dis[u.x][u.y+][]=dis[u.x][u.y][]+lie[u.x][u.y+];
if(!vis[u.x][u.y+][]){
vis[u.x][u.y+][]=;
q.push((edge){u.x,u.y+,});
}
}
}
if(dis[u.x][u.y][]>dis[u.x][u.y][]+xie[u.x][u.y]){
dis[u.x][u.y][]=dis[u.x][u.y][]+xie[u.x][u.y];
if(!vis[u.x][u.y][]){
vis[u.x][u.y][]=;
q.push((edge){u.x,u.y,});
}
}
}
else{
if(u.x<n-){
if(dis[u.x+][u.y][]>dis[u.x][u.y][]+hang[u.x+][u.y]){
dis[u.x+][u.y][]=dis[u.x][u.y][]+hang[u.x+][u.y];
if(!vis[u.x+][u.y][]){
vis[u.x+][u.y][]=;
q.push((edge){u.x+,u.y,});
}
}
}
if(u.y>){
if(dis[u.x][u.y-][]>dis[u.x][u.y][]+lie[u.x][u.y]){
dis[u.x][u.y-][]=dis[u.x][u.y][]+lie[u.x][u.y];
if(!vis[u.x][u.y-][]){
vis[u.x][u.y-][]=;
q.push((edge){u.x,u.y-,});
}
}
}
if(dis[u.x][u.y][]>dis[u.x][u.y][]+xie[u.x][u.y]){
dis[u.x][u.y][]=dis[u.x][u.y][]+xie[u.x][u.y];
if(!vis[u.x][u.y][]){
vis[u.x][u.y][]=;
q.push((edge){u.x,u.y,});
}
}
}
}
LL MIN=INT_MAX;
rep(i,,n-)MIN=min(MIN,dis[i][][]+lie[i][]);
rep(i,,m-)MIN=min(MIN,dis[n-][i][]+hang[n][i]);
printf("%lld\n",MIN);
return ;
}
bzoj1001(对偶图最短路)的更多相关文章
- 【BZOJ1001】[BeiJing2006]狼抓兔子 对偶图最短路
[BZOJ1001][BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子 ...
- BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路
问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...
- 【bzoj1001】[BeiJing2006]狼抓兔子 最小割+对偶图+最短路
题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
- 【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路
题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交 ...
- [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】
题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...
- BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)
题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...
- 【BZOJ2007】[Noi2010]海拔 对偶图最短路
[BZOJ2007][Noi2010]海拔 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看 ...
- BZOJ 2007 海拔(平面图最小割转对偶图最短路)
首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...
- [BZOJ2007][NOI2010]海拔(对偶图最短路)
首先确定所有点的海拔非0即1,问题转化成裸的平面图最小割问题,进而转化成对偶图最短路(同BZOJ1002). 这题的边是有向的,所以所有边顺时针旋转90度即可. 如下图(S和T的位置是反的). #in ...
- [BJOI2006]狼抓兔子——最小割转对偶图最短路
其实这个题直接Dinic跑最小割可过. (小优化是: 无向图建网络流,一条边不用建成4条,可以正反容量都是边权即可.完全等价 ) [无效]网络流之转换对偶图 一个巧妙的事情是,如果建边合适的话,最小割 ...
随机推荐
- JavaScript 版数据结构与算法(二)队列
今天,我们要讲的是数据结构与算法中的队列. 队列简介 队列是什么?队列是一种先进先出(FIFO)的数据结构.队列有什么用呢?队列通常用来描述算法或生活中的一些先进先出的场景,比如: 在图的广度优先遍历 ...
- Map 基础用法
import java.util.Collection; import java.util.HashMap; import java.util.Map; import java.util.Set; p ...
- Centos7下安装php7
通过编译的方式安装php7 1. 安装PHP7 ## 下载 wget http://us2.php.net/distributions/php-7.0.2.tar.gz ## 安装 tar zxvf ...
- 【转】Python中实现远程调用(RPC、RMI)简单例子
远程调用使得调用远程服务器的对象.方法的方式就和调用本地对象.方法的方式差不多,因为我们通过网络编程把这些都隐藏起来了.远程调用是分布式系统的基础. 远程调用一般分为两种,远程过程调用(RPC)和远程 ...
- 我修改的时钟flash
<object type="application/x-shockwave-flash" style="outline:none;" data=" ...
- 使用hive客户端java api读写hive集群上的信息
上文介绍了hdfs集群信息的读取方式,本文说hive 1.先解决依赖 <properties> <hive.version>1.2.1</hive.version> ...
- 线性布局(LinearLayout)
线性布局(LinearLayout) 备注 match_parent填充布局单元内尽可能多的空间 wrap_content完整显示控件内容 orientation有两个值,horizontal水平显示 ...
- 【转载】CSS3的calc()使用
文章转载自 w3cplus http://www.w3cplus.com/ 原文链接:http://www.w3cplus.com/css3/how-to-use-css3-calc-function ...
- scanf和gets的差别
scanf("%s", str1); scanf() 读取到空格时就认为字符串输入结束了,不会继续读取了. 第一个 scanf() 读取到 "Java" 后遇到 ...
- 初学者易上手的SSH-hibernate02 三种查询方式
在上一章中已经搭建好了一个hibernate的环境,那么这一章我们就使用这个环境来进行基本CRUD.在这之前我们先了解一个东西:主键生成策略.就是当向数据库表中插入记录的时候,这个记录的主键该如何生成 ...