More 3D Graphics (rgl) for Classification with Local Logistic Regression and Kernel Density Estimates (from The Elements of Statistical Learning)(转)
This post builds on a previous post, but can be read and understood independently.
As part of my course on statistical learning, we created 3D graphics to foster a more intuitive understanding of the various methods that are used to relax the assumption of linearity (in the predictors) in regression and classification methods.
The authors of our text (The Elements of Statistical Learning, 2nd Edition) provide a Mixture Simulation data set that has two continuous predictors and a binary outcome. This data is used to demonstrate classification procedures by plotting classification boundaries in the two predictors, which are determined by one or more surfaces (e.g., a probability surface such as that produced by logistic regression, or multiple intersecting surfaces as in linear discriminant analysis). In our class laboratory, we used the R package rgl to create a 3D representation of these surfaces for a variety of semiparametric classification procedures.
Chapter 6 presents local logistic regression and kernel density classification, among other kernel (local) classification and regression methods. Below is the code and graphic (a 2D projection) associated with the local linear logistic regression in these data:
library(rgl)
load(url("http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/ESL.mixture.rda"))
dat <- ESL.mixture
ddat <- data.frame(y=dat$y, x1=dat$x[,1], x2=dat$x[,2]) ## create 3D graphic, rotate to view 2D x1/x2 projection
par3d(FOV=1,userMatrix=diag(4))
plot3d(dat$xnew[,1], dat$xnew[,2], dat$prob, type="n",
xlab="x1", ylab="x2", zlab="",
axes=FALSE, box=TRUE, aspect=1) ## plot points and bounding box
x1r <- range(dat$px1)
x2r <- range(dat$px2)
pts <- plot3d(dat$x[,1], dat$x[,2], 1,
type="p", radius=0.5, add=TRUE,
col=ifelse(dat$y, "orange", "blue"))
lns <- lines3d(x1r[c(1,2,2,1,1)], x2r[c(1,1,2,2,1)], 1) ## draw Bayes (True) classification boundary in blue
dat$probm <- with(dat, matrix(prob, length(px1), length(px2)))
dat$cls <- with(dat, contourLines(px1, px2, probm, levels=0.5))
pls0 <- lapply(dat$cls, function(p) lines3d(p$x, p$y, z=1, color="blue")) ## compute probabilities plot classification boundary
## associated with local linear logistic regression
probs.loc <-
apply(dat$xnew, 1, function(x0) {
## smoothing parameter
l <- 1/2
## compute (Gaussian) kernel weights
d <- colSums((rbind(ddat$x1, ddat$x2) - x0)^2)
k <- exp(-d/2/l^2)
## local fit at x0
fit <- suppressWarnings(glm(y ~ x1 + x2, data=ddat, weights=k,
family=binomial(link="logit")))
## predict at x0
as.numeric(predict(fit, type="response", newdata=as.data.frame(t(x0))))
}) dat$probm.loc <- with(dat, matrix(probs.loc, length(px1), length(px2)))
dat$cls.loc <- with(dat, contourLines(px1, px2, probm.loc, levels=0.5))
pls <- lapply(dat$cls.loc, function(p) lines3d(p$x, p$y, z=1)) ## plot probability surface and decision plane
sfc <- surface3d(dat$px1, dat$px2, probs.loc, alpha=1.0,
color="gray", specular="gray")
qds <- quads3d(x1r[c(1,2,2,1)], x2r[c(1,1,2,2)], 0.5, alpha=0.4,
color="gray", lit=FALSE)
In the above graphic, the solid blue line represents the true Bayes decision boundary (i.e., {x: Pr("orange"|x) = 0.5}), which is computed from the model used to simulate these data. The probability surface (generated by the local logistic regression) is represented in gray, and the corresponding Bayes decision boundary occurs where the plane f(x) = 0.5 (in light gray) intersects with the probability surface. The solid black line is a projection of this intersection. Here is a link to the interactive version of this graphic: local logistic regression.
Below is the code and graphic associated with the kernel density classification (note: this code below should only be executed after the above code, since the 3D graphic is modified, rather than created anew):
## clear the surface, decision plane, and decision boundary
pop3d(id=sfc); pop3d(id=qds)
for(pl in pls) pop3d(id=pl) ## kernel density classification
## compute kernel density estimates for each class
dens.kde <-
lapply(unique(ddat$y), function(uy) {
apply(dat$xnew, 1, function(x0) {
## subset to current class
dsub <- subset(ddat, y==uy)
## smoothing parameter
l <- 1/2
## kernel density estimate at x0
mean(dnorm(dsub$x1-x0[1], 0, l)*dnorm(dsub$x2-x0[2], 0, l))
})
}) ## compute prior for each class (sample proportion)
prir.kde <- table(ddat$y)/length(dat$y) ## compute posterior probability Pr(y=1|x)
probs.kde <- prir.kde[2]*dens.kde[[2]]/
(prir.kde[1]*dens.kde[[1]]+prir.kde[2]*dens.kde[[2]]) ## plot classification boundary associated
## with kernel density classification
dat$probm.kde <- with(dat, matrix(probs.kde, length(px1), length(px2)))
dat$cls.kde <- with(dat, contourLines(px1, px2, probm.kde, levels=0.5))
pls <- lapply(dat$cls.kde, function(p) lines3d(p$x, p$y, z=1)) ## plot probability surface and decision plane
sfc <- surface3d(dat$px1, dat$px2, probs.kde, alpha=1.0,
color="gray", specular="gray")
qds <- quads3d(x1r[c(1,2,2,1)], x2r[c(1,1,2,2)], 0.5, alpha=0.4,
color="gray", lit=FALSE)
Here are links to the interactive versions of both graphics: local logistic regression, kernel density classification
This entry was posted in Technical and tagged data, graphics, programming, R, statistics on February 7, 2015.
More 3D Graphics (rgl) for Classification with Local Logistic Regression and Kernel Density Estimates (from The Elements of Statistical Learning)(转)的更多相关文章
- Some 3D Graphics (rgl) for Classification with Splines and Logistic Regression (from The Elements of Statistical Learning)(转)
This semester I'm teaching from Hastie, Tibshirani, and Friedman's book, The Elements of Statistical ...
- 李宏毅机器学习笔记3:Classification、Logistic Regression
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- Logistic Regression Using Gradient Descent -- Binary Classification 代码实现
1. 原理 Cost function Theta 2. Python # -*- coding:utf8 -*- import numpy as np import matplotlib.pyplo ...
- Classification week2: logistic regression classifier 笔记
华盛顿大学 machine learning: Classification 笔记. linear classifier 线性分类器 多项式: Logistic regression & 概率 ...
- Classification and logistic regression
logistic 回归 1.问题: 在上面讨论回归问题时.讨论的结果都是连续类型.但假设要求做分类呢?即讨论结果为离散型的值. 2.解答: 假设: 当中: g(z)的图形例如以下: 由此可知:当hθ( ...
- Android Programming 3D Graphics with OpenGL ES (Including Nehe's Port)
https://www3.ntu.edu.sg/home/ehchua/programming/android/Android_3D.html
- Logistic Regression and Classification
分类(Classification)与回归都属于监督学习,两者的唯一区别在于,前者要预测的输出变量\(y\)只能取离散值,而后者的输出变量是连续的.这些离散的输出变量在分类问题中通常称之为标签(Lab ...
- Logistic Regression求解classification问题
classification问题和regression问题类似,区别在于y值是一个离散值,例如binary classification,y值只取0或1. 方法来自Andrew Ng的Machine ...
- 分类和逻辑回归(Classification and logistic regression)
分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里.首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例 ...
随机推荐
- Spring实战——缓存
缓存 提到缓存,你能想到什么?一级缓存,二级缓存,web缓存,redis-- 你所能想到的各种包罗万象存在的打着缓存旗号存在的各种技术或者实现,无非都是宣扬缓存技术的优势就是快,无需反复查询等. 当然 ...
- 大麦盒子(domybox)无法进入系统解决方案!【简单几步】
大麦无法进入系统解决方案![简单几步]前提准备:电脑一台盒子控制台软件盒子开机并联网并且盒子和电脑处于同一个路由器下的网络! 前提准备:电脑一台盒子控制台软件盒子开机并联网并且盒子和电脑处于同一个路由 ...
- LINQ to XML编程之编程基础
1.声明,LINQ to XML让xml的创建变得非常简单. XDocument myDocument = new XDocument( new XDeclaration("1.0" ...
- 复选框选中删除行(DOM练习)
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- java线程控制安全
synchronized() 在线程运行的时候,有时会出现线程安全问题例如:买票程序,有可能会出现不同窗口买同一张编号的票 运行如下代码: public class runable implement ...
- angular 实现时间段选择组件
前段时间公司有个后台项目需要使用一个选择时间段的组件,看了一下就自己写了一下,用angular写这种插件还是很简单的. 先看看最终是什么样子的: 功能是用户可以选择任意时间段,鼠标可以拖动任意的一周的 ...
- [CTSC1999]【网络流24题】星际转移
Description 由于人类对自然资源的消耗,人们意识到大约在2300 年之后,地球就不能再居住了.于是在月球上建立了新的绿地,以便在需要时移民.令人意想不到的是,2177 年冬由于未知的原因,地 ...
- Mysql PHP
if(_mysql.query(sql.data()) < 0) 这里不能使用sql.c_str() 因为这个会有‘\0’而在Mysql查询中,这个0是不希望出现的.
- C#1所搭建的核心基础
一,委托 委托封装了包含特殊返回类型和一组参数的行为,类似包含单一方法接口. 委托类型声明中所描述的类型签名决定了哪个方法可以用于创建委托实例,同时决定了调用的签名:委托类型实际上只是参数类型的一个列 ...
- windows下安装Redis并部署成服务
windows下安装Redis并部署成服务 Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件. 一:下载 下载地址: windows版本: http ...