本文记录matlibplot常用基本操作,都是基本功能(代码解释了基本用法),不涉及复杂联合操作,其中各用法详细用法可参考官网

对于matlibplot一些基本概念可以参考该片blog.解释的很详细。

1. 基本画图操作

##mofan_matplotlib.pyplot

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(1,50)
y = 2*x + 1
#draw the lines
#plt.plot(x,y)
#show to draw the figure :must call at the last
#plt.show() #figure的使用
##figure就是图片窗口
#如画两张图
y1 = x**2 #第一张图
plt.figure()
plt.plot(x,y) #第二张图
#num指定第几章图, figsize指定图的大小
#plt.figure(num=3, figsize=(8,5))
##在一张图放两张线条
plt.plot(x, y1)
plt.plot(x, y, color= 'red', linewidth=1.0, linestyle='-') plt.show()

Fig1:

2. 描述坐标

#转换坐标单位:重写坐标
new_ticks = np.linspace(-15,70,0.5)
print(new_ticks)
plt.xticks(new_ticks) plt.figure() #限定坐标轴范围
plt.xlim(1,30)
plt.ylim(2,30) #修改坐标轴名称
plt.xlabel('x')
plt.ylabel('y') #将坐标换成字符标识
#利用正则做显示
plt.yticks([50, 10, -10], ['really good','good','bad'])

Fig2:

3. 设置坐标轴位置

# gca = 'get current axis'
ax = plt.gca()
#把右边的和上面的横轴去掉
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
#用下面的轴做x轴,左边的轴做y轴
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
#设置坐标轴位置
ax.spines['bottom'].set_position(('data',-1))
ax.spines['left'].set_position(('data',0))

Fig3:

4. 图列

plt.plot(x, y1, color= 'red', linewidth=1.0, linestyle='-',label = 'y1=x^2')
#legend:参数可控制(handles=, labels = , loc = 'best')
plt.legend(loc = 'best')

Fig 4:

5. 对坐标轴每个刻度做处理

##把坐标轴上的标度拿出来单独做标注
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(12)
#alpha:坐标透明度
label.set_bbox(dict(facecolor='red', edgecolor="None", alpha=0.7))

Fig 5:

6. 散点图

import matplotlib.pyplot as plt
import numpy as np n = 1024
X = np.random.normal(0,1,n)
Y = np.random.normal(0,1,n)
# 设置点颜色
T = np.arctan2(Y,X) #s:size, c:color,
plt.scatter(X,Y, s=75, c=T,alpha=0.5 ) plt.xlim((-1.5, 1.5))
plt.ylim((-1.5, 1.5)) plt.show()

Fig 6:

7. 柱状图

n = 12
X = np.arange(n)
Y1 = (1-X/float(n)) * np.random.uniform(0.5, 1.0, n)
Y2 = (1-X/float(n)) * np.random.uniform(0.5, 1.0, n) #画柱状图
#facecolor:, edgecolor边缘颜色
#+Y1,往上
plt.bar(X, +Y1,facecolor='#9999ff', edgecolor ='white') #加标准注
#把X,Y1的值成对传给x,y,形成坐标
for x, y in zip(X, Y1):
plt.text(x +0.4, y +0.05,'%0.2f'%y, ha = 'center',va = 'bottom' )

Fig 7:

8. 画二维矩阵图

import matplotlib.pyplot as plt
import numpy as np
import random #生成9个值 每个是一个格子
l = [random.random() for i in range(9)]
a = np.array(l).reshape((3,3))
#print(a) #参数参考官网用法
#interpolation:是显示效果
plt.imshow(a, interpolation='nearest', cmap='bone', origin='lower')
#添加bar
plt.colorbar() plt.xticks(())
plt.yticks(())
plt.show()

Fig 8:

9. 画3D图

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
#在fig里面加一个3D的axes
ax = Axes3D(fig) X = np.arange(-4,4, 0.25)
Y = np.arange(-4,4, 0.25)
#把X,Ymesh到二维空间
X,Y = np.meshgrid(X, Y)
#生成一个高
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R) #在Axes画3D图
#rstride,cstride是行/列跨度
#cmap是画图的方式
ax.plot_surface(X,Y,Z, rstride =1, cstride=1, cmap = plt.get_cmap('rainbow'))
#画等高线,zdir表示投射轴
#offset是投射的坐标位置
ax.contourf(X,Y,Z, zdir = 'z', offset = -2, cmap='rainbow')
#ax.contourf(X,Y,Z, xdir = 'x', offset = -4, cmap='rainbow')
#Z轴的范围
ax.set_zlim(-2,2)
#画高

Fig 9:

10. 画子图

#创建子图
#把一个fig划分为2*2,即4个图
#(2,2,1)画第一张图
plt.subplot(2,2,1)#plt.subplot(221)
plt.plot([0,1],[0,1])
#(2,2,2)画第二张图
plt.subplot(2,2,2)#plt.subplot(221)
plt.plot([0,1],[0,1]) plt.subplot(2,2,3)#plt.subplot(221)
plt.plot([0,1],[0,1])

Fig 10:

11. 图嵌套

fig = plt.figure()
x = [1,2,3,4,5,6,7]
y = [1,3,4,2,5,8,6]
#其实相当于按比例在fig这张大图画各个小图
#先画一张比列很大的
#参数是fig的百分比
left, bottom, width, height = 0.1, 0.1, 0.8, 0.9
ax1 = fig.add_axes([left, bottom, width, height])
#给图画图
ax1.plot(x,y,'r')
#注意是set_tile
ax1.set_title('tile') #再画小图
#为小图加坐标,参数是fig的百分比
left, bottom, width, height = 0.2, 0.7, 0.3, 0.3
ax2 = fig.add_axes([left, bottom, width, height])
#给小图画图
ax2.plot(y,x,'r')
ax2.set_title('tile_little')

Fig 11:

12.  共享x轴,不同Y周

x = np.arange(0,10,0.1)
y1 = 0.05 *x**2
y2 = -1*y1
#同时创建fig和sub
#实际是画两张图 然后重叠,故用subplot
fig,ax1 = plt.subplots()
#共享x
ax2 = ax1.twinx()
ax1.plot(x, y1,'g-')
ax2.plot(x, y2,'b--') ax1.set_xlabel('x data')
ax.set_ylabel('Y1',color = 'g')
ax.set_ylabel('Y2',color = 'b')
plt.show()

Fig 12:

MatplotLib常用基本操作的更多相关文章

  1. matplotlib常用基础知识

    linestyle(ls)线型参数表 常用color(c)参数表 marker标记符号表 plt常用方法表 plt.legend(loc=0)用于显示图例,图例的位置参数loc matplotlib常 ...

  2. python 数据分析 Matplotlib常用图表

    Matplotlib绘图一般用于数据可视化 常用的图表有: 折线图 散点图/气泡图 条形图/柱状图 饼图 直方图 箱线图 热力图 需要学习的不只是如何绘图,更要知道什么样的数据用什么图表展示效果最好 ...

  3. 数据分析第二篇:matplotlib 常用的几个绘图方法

    Matplotlib matplotlib是python的绘图库,使用它可以很方便的绘制出版质量级别的图形 matplotlib的基本功能 1.基本绘图 1.1 绘制坐标系中连续的线,设置线型/线宽/ ...

  4. TensorFlow、numpy、matplotlib、基本操作

    一.常量的定义 import tensorflow as tf #类比 语法 api 原理 #基础数据类型 运算符 流程 字典 数组 data1 = tf.constant(2,dtype=tf.in ...

  5. 『Python』matplotlib常用函数

    1. 绘制图表组成元素的主要函数 1.1 plot()--展现量的变化趋势 import numpy as np import matplotlib.pyplot as plt import matp ...

  6. mysql常用基本操作

    mysql常用操作 查看都有哪些库 show databases; 查看某个库的表 use 库名; show tables; 查看表的字段 desc 表名; 当前是哪个用户 select user() ...

  7. Matplotlib常用示例入门

    一.Matplotlib介绍 Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形.通过 Matplotlib,开发者可以仅需要几行 ...

  8. numpy库常用基本操作

    NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量.比如说,二维数组相当于是一个一维数 ...

  9. Selenium-WebDriver框架常用基本操作

    1.基础元素定位的八种方法 WebDriver driver = new ChromeDriver(); WebElement element = new WebElement(); 1.1 By.i ...

随机推荐

  1. C语言基础 - 输出1-100万之间的素数

    其实这个很简单 代码 网上也一大堆... //判断素数 BOOL isPrime(int num) { for (int i = 2; i <= sqrt(num); i++) { //能整除则 ...

  2. golang windows 安装方法

    编译器下载链接:https://golang.org/dl/ 默认安装到C盘,不用修改.   添加环境变量:     配置环境变量:   注:C:\mygo\bin 配置这个后,则可以直接在 Dos ...

  3. 关于javacc的认识

    http://www.cnblogs.com/Gavin_Liu/archive/2009/03/07/1405029.html

  4. ES6中的迭代器(Iterator)和生成器(Generator)

    前面的话 用循环语句迭代数据时,必须要初始化一个变量来记录每一次迭代在数据集合中的位置,而在许多编程语言中,已经开始通过程序化的方式用迭代器对象返回迭代过程中集合的每一个元素 迭代器的使用可以极大地简 ...

  5. 白话ASP.NET MVC之一:Url 路由

    好久没有写关于ASP.NET MVC的东西了,虽然<ASP.NET MVC4框架揭秘>已经完完整整的看完一遍,但是感觉和一锅粥差不多,没什么可写的,因为我自己不理解,也就写不出来.现在开始 ...

  6. HDU5727 Necklace(二分图匹配)

    Problem Description SJX has 2*N magic gems. N of them have Yin energy inside while others have Yang ...

  7. C#和NewSQL更配 —— CockroachDB入门(可能是C#下的全网首发)

    阅读目录 CockroachDB是什么 环境部署 实战 性能测试 结语 一.CockroachDB是什么 CockroachDB(https://www.cockroachlabs.com)是Goog ...

  8. Appium入门示例(Java)

    一.使用Eclipse直接创建案例工程 1.打开Eclipse,[File]-->[New]-->[Project] 2.选择[Java Project]-->[Next] 3.输入 ...

  9. ECC椭圆曲线详解(有具体实例)

    前言 ECC英文全称"Ellipse Curve Cryptography" 与传统的基于大质数因子分解困难性的加密方法不同,ECC通过椭圆曲线方程式的性质产生密钥 ECC164位 ...

  10. iconfont 使用

    阿里巴巴适量图库  http://www.iconfont.cn/ 官方帮助中有非常详细的操作指导 http://www.iconfont.cn/help/detail?spm=a313x.77810 ...