The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.
Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of i th town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2

Sample Output

1 6
3 7
4 9
5 7
8 3
此题纠结了好久,重点是想办法输出,把所有更新了的节点记录,到下一次更新时输出
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
const double inf=1e20;
double d[800],cost[800][800];
int x[800],y[800];
int n,m;
struct node{
   double x,y;
}e[800];
double dis(node a,node b)
{
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
void prim()
{
    bool vis[800];
    for(int i=1;i<=n;i++)
    {
        vis[i]=0;
        d[i]=inf;
    }
    d[0]=0;
    int num=0;
    while(1){
        int v=-1;
        for(int i=1;i<=n;i++)
        {
            if(!vis[i]&&(v==-1||d[i]<d[v]))//找到最小的边
                v=i;
        }
        if(v==-1)break;//无更新退出
        vis[v]=1;
        if(num&&cost[x[v]][y[v]])printf("%d %d\n",x[v],y[v]);
        num=1;
        for(int i=1;i<=n;i++)
        {
            if(d[i]>cost[i][v])//把所有的边都更新一边
            {
                d[i]=cost[i][v];
                x[i]=i;
                y[i]=v;
          /* if(cost[i][v]!=0)
printf("%d %d\n",i,v);//每次更新全部时,即使不是下一个节点,也是会被更新的,所以要只输出下一个节点的*/
            }
        }
    }
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%lf%lf",&e[i].x,&e[i].y);
    for(int i=1;i<=n;i++)
    {
        for(int j=i+1;j<=n;j++)
        {
            cost[i][j]=cost[j][i]=dis(e[i],e[j]);
        }
        cost[i][i]=0;
    }
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        cost[a][b]=cost[b][a]=0;
    }
    prim();
    return 0;
}

poj1751最小生成树的更多相关文章

  1. Highways POJ-1751 最小生成树 Prim算法

    Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输 ...

  2. C - Highways poj1751最小生成树

    The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of p ...

  3. POJ-1751 Highways(最小生成树消边+输出边)

    http://poj.org/problem?id=1751 Description The island nation of Flatopia is perfectly flat. Unfortun ...

  4. POJ1751 Highways【最小生成树】

    题意: 给你N个城市的坐标,城市之间存在公路,但是由于其中一些道路损坏了,需要维修,维修的费用与公路长成正比(公路是直的). 但现有M条公路是完整的,不需要维修,下面有M行,表示不需要维修的道路两端的 ...

  5. 最小生成树练习3(普里姆算法Prim)

    风萧萧兮易水寒,壮士要去敲代码.本女子开学后再敲了.. poj1258 Agri-Net(最小生成树)水题. #include<cstdio> #include<cstring> ...

  6. POJ-1751 Highways---确定部分边的MST

    题目链接: https://vjudge.net/problem/POJ-1751 题目大意: 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多 ...

  7. kuangbin最小生成树专题

    网址:https://vjudge.net/contest/66965#overview 第一题: poj1251 裸最小生成树 #include<iostream> #include&l ...

  8. 最小生成树(Kruskal算法-边集数组)

    以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...

  9. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

随机推荐

  1. Maven——快速入门手册(学习记录)

    前言: 前段时间进行了一点maven的入门学习,在这里做个记录,希望能帮到一些正在学习的朋友们.maven版本为3.3.9.希望大家觉得好的点个赞,觉得不好的多提提意见和建议做个交流.这里也贴出我学习 ...

  2. 樱花的季节,教大家用canvas画出飞舞的樱花树

    又到了樱花的季节,教大家使用canvas画出飞舞的樱花树效果. 废话少说,先看效果. 演示效果地址:http://suohb.com/work/tree4.htm 查看演示效果 第一步,我们先画出一棵 ...

  3. 【子非鱼】插入排序过程呈现之java内置GUI表示

    先给代码,再给过程视频: package com.dyi.wyb.sort; import java.awt.Color; import java.awt.Graphics; import java. ...

  4. iOS开发之MapKit

    1.概述 MapKit框架使用前提: 导入框架: 导入主头文件: #import <MapKit/MapKit.h> MapKit框架使用须知: MapKit框架中所有数据类型的前缀都是M ...

  5. jsonp原生js代码示例

    /* mightygumball.js */ /* * get the content of a JSON file using JSONP * update every 3 seconds. * * ...

  6. 运用google-protobuf的IM消息应用开发(前端篇)

    前言: 公司原本使用了第三方提供的IM消息系统,随着业务发展需要,三方的服务有限,并且出现问题也很难处理和排查,所以这次新版本迭代,我们的server同事呕心沥血做了一个新的IM消息系统,我们也因此配 ...

  7. js中的this关键字,setTimeout(),setInterval()的执行过程

    var test1 = { name: 'windseek1', showname: function () { console.log(this.name); } } var test2 = { n ...

  8. .net core 持续构建简易教程

    环境需求:jenkins和.netcore 由于jenkins在真机上的部署比较麻烦,所以在这里我使用基于jenkins的Docker,只要任何一台运行docker的环境都可以进行以下的操作. doc ...

  9. POPTEST老李谈Debug和Release的区别(c#) 1

    POPTEST老李谈Debug和Release的区别(c#)   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣 ...

  10. 老李推荐:第14章3节《MonkeyRunner源码剖析》 HierarchyViewer实现原理-HierarchyViewer实例化

    老李推荐:第14章3节<MonkeyRunner源码剖析> HierarchyViewer实现原理-HierarchyViewer实例化 poptest是国内唯一一家培养测试开发工程师的培 ...