SparkMLlib分类算法之逻辑回归算法

(一),逻辑回归算法的概念参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836

    逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同。逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估。

    

(二),SparkMLlib逻辑回归应用

1,数据集的选择:http://www.kaggle.com/c/stumbleupon/data 中的(train.txt和test.txt)

2,数据集描述:关于涉及网页中推荐的页面是短暂(短暂存在,很快就不流行了)还是长久(长时间流行)的分类

3,数据预处理及获取训练集和测试集

val orig_file=sc.textFile("train_nohead.tsv")
//println(orig_file.first())
val data_file=orig_file.map(_.split("\t")).map{
r =>
val trimmed =r.map(_.replace("\"",""))
val lable=trimmed(r.length-1).toDouble
val feature=trimmed.slice(4,r.length-1).map(d => if(d=="?")0.0
else d.toDouble)
LabeledPoint(lable,Vectors.dense(feature))
}.randomSplit(Array(0.7,0.3),11L)
val data_train=data_file(0)//训练集
val data_test=data_file(1)//测试集

4,逻辑回归模型训练及模型评价

val model_log=new LogisticRegressionWithLBFGS().setNumClasses(2).run(data_train)
/*
有两种最优化算法可以求解逻辑回归问题并求出最优参数:mini-batch gradient descent(梯度下降法),L-BFGS法。我们更推荐使用L-BFGS,因为它能更快聚合,而且现在spark2.1.0已经放弃LogisticRegressionWithLSGD()模式了*/
/*性能评估:使用精确度,PR曲线,AOC曲线*/
val predictionAndLabels=data_test.map(point =>
(model_log.predict(point.features),point.label)
)
val metricsLG=new MulticlassMetrics(predictionAndLabels)//0.6079335793357934
val metrics=Seq(model_log).map{
model =>
val socreAndLabels=data_test.map {
point => (model.predict(point.features), point.label)
}
val metrics=new BinaryClassificationMetrics(socreAndLabels)
(model.getClass.getSimpleName,metrics.areaUnderPR(),metrics.areaUnderROC())
}
val allMetrics = metrics
allMetrics.foreach{ case (m, pr, roc) =>
println(f"$m, Area under PR: ${pr * 100.0}%2.4f%%, Area under ROC: ${roc * 100.0}%2.4f%%")
}
/*LogisticRegressionModel, Area under PR: 73.1104%, Area under ROC: 60.4200%*/

5,模型优化

  特征标准化处理

val orig_file=sc.textFile("train_nohead.tsv")
//println(orig_file.first())
val data_file=orig_file.map(_.split("\t")).map{
r =>
val trimmed =r.map(_.replace("\"",""))
val lable=trimmed(r.length-1).toDouble
val feature=trimmed.slice(4,r.length-1).map(d => if(d=="?")0.0
else d.toDouble)
LabeledPoint(lable,Vectors.dense(feature))
}
/*特征标准化优化*/
val vectors=data_file.map(x =>x.features)
val rows=new RowMatrix(vectors)
println(rows.computeColumnSummaryStatistics().variance)//每列的方差
val scaler=new StandardScaler(withMean=true,withStd=true).fit(vectors)//标准化
val scaled_data=data_file.map(point => LabeledPoint(point.label,scaler.transform(point.features)))
.randomSplit(Array(0.7,0.3),11L)
val data_train=scaled_data(0)
val data_test=scaled_data(1)
/*训练逻辑回归模型*/
val model_log=new LogisticRegressionWithLBFGS().setNumClasses(2).run(data_train)
/*在使用模型做预测时,如何知道预测到底好不好呢?换句话说,应该知道怎么评估模型性能。
通常在二分类中使用的评估方法包括:预测正确率和错误率、准确率和召回率、准确率  召回率
曲线下方的面积、 ROC 曲线、 ROC 曲线下的面积和 F-Measure*/
val predictionAndLabels=data_test.map(point =>
(model_log.predict(point.features),point.label)
)
val metricsLG=new MulticlassMetrics(predictionAndLabels)//精确度:0.6236162361623616
val metrics=Seq(model_log).map{
model =>
val socreAndLabels=data_test.map {
point => (model.predict(point.features), point.label)
}
val metrics=new BinaryClassificationMetrics(socreAndLabels)
(model.getClass.getSimpleName,metrics.areaUnderPR(),metrics.areaUnderROC())
}
val allMetrics = metrics
allMetrics.foreach{ case (m, pr, roc) =>
println(f"$m, Area under PR: ${pr * 100.0}%2.4f%%, Area under ROC: ${roc * 100.0}%2.4f%%")
}
/*LogisticRegressionModel, Area under PR: 74.1103%, Area under ROC: 62.0064%*/

6,总结

  1,如何能提高更明显的精度。。。。。

  2,对逻辑回归的认识还不够。。。。

SparkMLlib学习分类算法之逻辑回归算法的更多相关文章

  1. SparkMLlib分类算法之逻辑回归算法

    SparkMLlib分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/5169383 ...

  2. 分类算法之逻辑回归(Logistic Regression

    分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就 ...

  3. sklearn调用逻辑回归算法

    1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...

  4. 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等

    优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...

  5. 逻辑回归算法的原理及实现(LR)

    Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, L ...

  6. Spark机器学习(2):逻辑回归算法

    逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...

  7. (数据科学学习手札24)逻辑回归分类器原理详解&Python与R实现

    一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们 ...

  8. 吴恩达深度学习:2.9逻辑回归梯度下降法(Logistic Regression Gradient descent)

    1.回顾logistic回归,下式中a是逻辑回归的输出,y是样本的真值标签值 . (1)现在写出该样本的偏导数流程图.假设这个样本只有两个特征x1和x2, 为了计算z,我们需要输入参数w1.w2和b还 ...

  9. 《BI那点儿事》Microsoft 逻辑回归算法——预测股票的涨跌

    数据准备:一组股票历史成交数据(股票代码:601106 中国一重),起止日期:2011-01-04至今,其中变量有“开盘”.“最高”.“最低”.“收盘”.“总手”.“金额”.“涨跌”等 UPDATE ...

随机推荐

  1. Access SQL实现连续及不连续Rank排名

    一.关于起因 在Excel中我们经常使用Rank函数对数据进行排名操作.而在Access中我们要进行排名是找不到这个Rank函数的,此时我们需要自己书写VBA代码或者建立SQL查询来完成排序操作. 今 ...

  2. Linux常用命令List

    参考<linux命令行大全> 一.文件命令 cd - 切换为之前目录 wc -l -w file cmd --help apropos keyword apropos cpu > t ...

  3. 深度学习的2016: NIPS 2016速览

    With best wishes for a happy New Year! NIPS(Nerual Information Processing Systems)是人工智能.机器学习领域的顶级学术会 ...

  4. Oracle 数据导入导出操作 (转)

    Oracle数据导入导出imp/exp 功能:Oracle数据导入导出imp/exp就相当与oracle数据还原与备份. 大多情况都可以用Oracle数据导入导出完成数据的备份和还原(不会造成数据的丢 ...

  5. 在Centos中yum安装和卸载软件的使用方法

    安装一个软件时 yum -y install httpd 安装多个相类似的软件时 yum -y install httpd* 安装多个非类似软件时 yum -y install httpd php p ...

  6. EasyMvc--让MVC区域开发更Easy(提供源码下载)

    核心: 主要利用MVC的区域功能,实现项目模块独立开发和调试. 目标: 各个模块以独立MVC应用程序存在,即模块可独立开发和调试. 动态注册各个模块路由. 一:新建解决方案目录结构 如图: 二:Eas ...

  7. USACO Section 1.1-1 Your Ride Is Here

    USACO 1.1-1 Your Ride Is Here 你的飞碟在这儿 众所周知,在每一个彗星后都有一只UFO.这些UFO时常来收集地球上的忠诚支持者.不幸的是,他们的飞碟每次出行都只能带上一组支 ...

  8. lua 数据类型

    lua 数据类型 8 种数据类型 类型 说明 nil 空类型 boolean 布尔类型 number 数值型, 浮点型 string 字符串 function 函数 userdata 用户自定义结构 ...

  9. stm32通过电调带动电机(可按键调速)

    这几天在做32通过电调带动电机的实验,上网一查,发现这方面的资料很少,经过自己的亲自实践,总结出以下经验,供大家参考. 论坛上也有很多人说自己在做,但是都遇到了同样的瓶颈.我想他们大多是pwm的频率和 ...

  10. IT职场经纬 |阿里web前端面试考题,你能答出来几个?

    有很多小伙伴们特别关心面试Web前端开发工程师时,面试官都会问哪些问题.今天小卓把收集来的"阿里Web前端开发面试题"整理贴出来分享给大家伙看看,赶紧收藏起来做准备吧~~ 一.CS ...