洛谷

Codeforces


分治的题目,或者说分治的思想,是非常灵活多变的。

所以对我这种智商低的选手特别不友好

脑子不好使怎么办?多做题吧……


前置知识

线性基是你必须会的,不然这题不可做。

推荐再去看看洛谷P4151。


思路

看到异或最短路,显然线性基。

做题多一些的同学想必已经想到了“洛谷P4151 [WC2011]最大XOR和路径”了。

先考虑没有加边删边的做法:

  1. 做出原图的任意一棵生成树;
  2. 把每个非树边和树边形成的环丢进线性基里;
  3. 询问时把两点在树上的路径异或和丢进线性基里求最小异或和。

为什么要这样?见洛谷P4151题解。

有加边呢?

其实差不了多少……加一条边就往线性基里丢个环就好了。

还有删边呢?

我们按时间分治,用线段树存储每一段新加了哪些边。

每到一个点,把边都连上,然后分治左右。退出时撤销即可。

然而此时图可能不连通,连边可能连了两棵不同的树,此时需要用可撤销并查集存储树的结构和每一个点到根的异或和。由于异或有着很好的性质,我们可以把两点连边改为两棵树的根连边,而答案不变。

具体是这样的:

设要在\(x,y\)之间连权值为\(w\)的边,它们所在的树的根是\(fx,fy\),则连一条\(fx-fy\),权值为$w\oplus getdis(x)\oplus getdis(y) $的边。

为什么对呢?你画画图推推式子就出来了。

然后就做完了~


代码

#include<bits/stdc++.h>
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define sz 202020
typedef long long ll;
template<typename T>
inline void read(T& t)
{
t=0;char f=0,ch=getchar();
double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.')
{
ch=getchar();
while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();
}
t=(f?-t:t);
}
template<typename T,typename... Args>
inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.txt","r",stdin);
#endif
}
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int n,m,Q;
map<pii,int>M;
struct hh{int f,t,w;hh(int ff=0,int tt=0,int ww=0){f=ff,t=tt,w=ww;}}edge[sz<<1];
int bg[sz<<1],ed[sz<<1]; struct HH
{
int w[34];
void ins(int x)
{
drep(i,30,0) if (x&(1<<i))
{
if (!w[i]) return (void)(w[i]=x);
x^=w[i];
}
}
int query(int x){ drep(i,30,0) if ((x^w[i])<x) x^=w[i]; return x; }
}_; vector<hh>v[sz<<2];
#define ls k<<1
#define rs k<<1|1
#define lson ls,l,mid
#define rson rs,mid+1,r
void insert(int k,int l,int r,int x,int y,hh e)
{
if (x<=l&&r<=y) return (void)v[k].push_back(e);
int mid=(l+r)>>1;
if (x<=mid) insert(lson,x,y,e);
if (y>mid) insert(rson,x,y,e);
}
int qx[sz],qy[sz];
int fa[sz],f[sz],dep[sz];
int getfa(int x){return x==fa[x]?x:getfa(fa[x]);}
int getdis(int x){return x==fa[x]?0:f[x]^getdis(fa[x]);}
struct hhh{int x,y;bool s;};
void solve(int k,int l,int r,HH G)
{
stack<hhh>S;
rep(i,0,(int)v[k].size()-1)
{
int x=v[k][i].f,y=v[k][i].t,w=v[k][i].w;
int fx=getfa(x),fy=getfa(y);
w^=getdis(x)^getdis(y);
if (fx==fy) G.ins(w);
else
{
if (dep[fx]>dep[fy]) swap(fx,fy),swap(x,y);
hhh cur=(hhh){fx,fy,0};
fa[fx]=fy;f[fx]=w;
if (dep[fx]==dep[fy]) ++dep[fy],cur.s=1;
S.push(cur);
}
}
if (l==r) printf("%d\n",G.query(getdis(qx[l])^getdis(qy[l])));
else
{
int mid=(l+r)>>1;
solve(lson,G);solve(rson,G);
}
while (!S.empty()) f[fa[S.top().x]=S.top().x]=0,dep[S.top().y]-=S.top().s,S.pop();
} int main()
{
file();
int x,y,z;
read(n,m);
rep(i,1,n) fa[i]=i;
int c=m,tim=1;
rep(i,1,m) read(x,y,z),M[MP(x,y)]=i,bg[i]=1,ed[i]=-1,edge[i]=hh(x,y,z);
read(Q);
rep(i,1,Q)
{
read(z,x,y);
if (z==1)
{
read(z);
M[MP(x,y)]=++c;bg[c]=tim;ed[c]=-1;
edge[c]=hh(x,y,z);
}
else if (z==2) ed[M[MP(x,y)]]=tim-1;
else qx[tim]=x,qy[tim]=y,++tim;
}
--tim;
rep(i,1,c) if (ed[i]==-1) ed[i]=tim;
rep(i,1,c) if (bg[i]<=ed[i]) insert(1,1,tim,bg[i],ed[i],edge[i]);
solve(1,1,tim,_);
return 0;
}

Codeforces 938G Shortest Path Queries [分治,线性基,并查集]的更多相关文章

  1. Wanafly 挑战赛 14 E 无效位置 (线性基+并查集)

    Wanafly 挑战赛 14 E 无效位置 (线性基+并查集) 传送门:https://ac.nowcoder.com/acm/contest/81/#question 题意: n个数,m次操作 一个 ...

  2. CF 938G Shortest Path Queries

    又到了喜闻乐见的写博客清醒时间了233,今天做的依然是线段树分治 这题算是经典应用了吧,假的动态图(可离线)问题 首先不难想到对于询问的时间进行线段树分治,这样就可以把每一条边出现的时间区间扔进线段树 ...

  3. Codeforces 938G 线段树分治 线性基 可撤销并查集

    Codeforces 938G Shortest Path Queries 一张连通图,三种操作 1.给x和y之间加上边权为d的边,保证不会产生重边 2.删除x和y之间的边,保证此边之前存在 3.询问 ...

  4. 【CF938G】Shortest Path Queries(线段树分治,并查集,线性基)

    [CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出 ...

  5. $CF938G\ Shortest\ Path\ Queries$ 线段树分治+线性基

    正解:线段树分治+线性基 解题报告: 传送门$QwQ$ 考虑如果只有操作3,就这题嘛$QwQ$ 欧克然后现在考虑加上了操作一操作二 于是就线段树分治鸭 首先线段树叶子节点是询问嘛这个不用说$QwQ$. ...

  6. CF938G Shortest Path Queries 和 CF576E Painting Edges

    这两道都用到了线段树分治和按秩合并可撤销并查集. Shortest Path Queries 给出一个连通带权无向图,边有边权,要求支持 q 个操作: x y d 在原图中加入一条 x 到 y 权值为 ...

  7. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  8. SCOI2016幸运数字(树剖/倍增/点分治+线性基)

    题目链接 loj luogu 题意 求树上路径最大点权异或和 自然想到(维护树上路径)+ (维护最大异或和) 那么有三种方法可以选择 1.树剖+线性基 2.倍增+线性基 3.点分治+线性基 至于线性基 ...

  9. Codeforces 938G(cdq分治+可撤销并查集+线性基)

    题意: 有一个无向连通图,支持三个操作: 1 x y d : 新建一条x和y的无向边,长度为d 2 x y    :删除x和y之间的无向边 3 x y    :询问x到y的所有路径中(可以绕环)最短的 ...

随机推荐

  1. 关于MySQL常用的查询语句

    一查询数值型数据: SELECT * FROM tb_name WHERE sum > 100; 查询谓词:>,=,<,<>,!=,!>,!<,=>,= ...

  2. 第28月第10天 iOS动态库

    1. https://www.cnblogs.com/wfwenchao/p/5577789.html https://github.com/wangzz/Demo http://www.kimbs. ...

  3. windows基本命令大全

    1.DOS常用命令详解 dir 列文件名 deltree 删除目录树 cls 清屏 cd 改变当前目录. copy 拷贝文件 diskcopy 复制磁盘 del 删除文件 format 格式化磁盘. ...

  4. python练习题1

    1.使用while循环打印输入 1 2 3 4 5 6 8 9 10 num = 1 while num <= 10: if num == 7: num = num + 1 continue e ...

  5. valgrind 开发板调试

    1.http://www.360doc.com/content/13/1205/13/7256015_334661588.shtml

  6. 《前端福音,vue.js 之豆瓣电影组件大揭秘-video》

    {{ message }} 小胡子语法   在 Vue 中被称之为双花括号插值表达式 ---------------- http://todomvc.com/ TodoMVC是一款开源的JavaScr ...

  7. Eclipse安装教程 ——史上最详细安装Java &Python教程说明

    参考链接:https://blog.csdn.net/zichen_ziqi/article/details/73995755

  8. 使用 JavaScript 将网站后台的数据变化实时更新到前端

    问:难道只能设置定时器每隔一秒通过 Ajax 向后台请求数据来实现吗? 答: 1. nodejs的 http://socket.io 支持上述 李宏训 所说的三种方式,另外还支持 Flash Sock ...

  9. C语言中用于计算数组长度的函数 “strlen() ”。

    de>#include<stdio.h>#include<stdlib.h>#define MAX_LEN 255int my_strlen1(const char* s ...

  10. 【Tomcat】CentOS7.0下安装多个Tomcat及其配置

    安装前所需环境 在开始安装Tomcat之前,需要安装环境JDK,并配置JAVA环境.如果不知道如何配置,可参考这篇博客:[Linux]CentOS7.0下安装JDK环境 Tomcat安装 Tomcat ...