Lightgbm 随笔
lightGBM
LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树。它可以说是分布式的,高效的,有以下优势:
更快的训练效率
低内存使用
更高的准确率
支持并行化学习
可处理大规模数据
与常用的机器学习算法进行比较:速度飞起
已有的xgboost等模型存在一些缺点,如:
每轮迭代时,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。
预排序方法(pre-sorted):首先,空间消耗大。这样的算法需要保存数据的特征值,还保存了特征排序的结果(例如排序后的索引,为了后续快速的计算分割点),这里需要消耗训练数据两倍的内存。其次时间上也有较大的开销,在遍历每一个分割点的时候,都需要进行分裂增益的计算,消耗的代价大。
对cache优化不友好。在预排序后,特征对梯度的访问是一种随机访问,并且不同的特征访问的顺序不一样,无法对cache进行优化。同时,在每一层长树的时候,需要随机访问一个行索引到叶子索引的数组,并且不同特征访问的顺序也不一样,也会造成较大的cache miss。
Lightgbm 针对上述问题进行改进。
lightGBM特点
概括来说,lightGBM主要有以下特点:
基于Histogram的决策树算法
带深度限制的Leaf-wise的叶子生长策略
直方图做差加速
直接支持类别特征(Categorical Feature)
Cache命中率优化
基于直方图的稀疏特征优化
多线程优化
Histogram算法
直方图算法的基本思想:先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图。遍历数据时,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点。
带深度限制的Leaf-wise的叶子生长策略
Level-wise过一次数据可以同时分裂同一层的叶子,容易进行多线程优化,也好控制模型复杂度,不容易过拟合。但实际上Level-wise是一种低效算法,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销,因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。
Leaf-wise则是一种更为高效的策略:每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后分裂,如此循环。因此同Level-wise相比,在分裂次数相同的情况下,Leaf-wise可以降低更多的误差,得到更好的精度。
Leaf-wise的缺点:可能会长出比较深的决策树,产生过拟合。因此LightGBM在Leaf-wise之上增加了一个最大深度限制,在保证高效率的同时防止过拟合。
lightGBM调参
主要参数:
(1)num_leaves
LightGBM使用的是leaf-wise的算法,因此在调节树的复杂程度时,使用的是num_leaves而不是max_depth。
大致换算关系:num_leaves = 2^(max_depth)
(2)样本分布非平衡数据集:可以param[‘is_unbalance’]=’true’
(3)Bagging参数:bagging_fraction+bagging_freq(必须同时设置)、feature_fraction
(4)min_data_in_leaf、min_sum_hessian_in_leaf
(主要内容源自 : https://blog.csdn.net/niaolianjiulin/article/details/76584785,非盈利引用,笔记备忘)
待续...
Lightgbm 随笔的更多相关文章
- AI人工智能系列随笔
初探 AI人工智能系列随笔:syntaxnet 初探(1)
- 【置顶】CoreCLR系列随笔
CoreCLR配置系列 在Windows上编译和调试CoreCLR GC探索系列 C++随笔:.NET CoreCLR之GC探索(1) C++随笔:.NET CoreCLR之GC探索(2) C++随笔 ...
- C++随笔:.NET CoreCLR之GC探索(4)
今天继续来 带大家讲解CoreCLR之GC,首先我们继续看这个GCSample,这篇文章是上一篇文章的继续,如果有不清楚的,还请翻到我写的上一篇随笔.下面我们继续: // Initialize fre ...
- C++随笔:从Hello World 探秘CoreCLR的内部(1)
紧接着上次的问题,上次的问题其实很简单,就是HelloWorld.exe运行失败,而本文的目的,就是成功调试HelloWorld这个控制台应用程序. 通过我的寻找,其实是一个名为TryRun的文件出了 ...
- ASP.NET MVC 系列随笔汇总[未完待续……]
ASP.NET MVC 系列随笔汇总[未完待续……] 为了方便大家浏览所以整理一下,有的系列篇幅中不是很全面以后会慢慢的补全的. 学前篇之: ASP.NET MVC学前篇之扩展方法.链式编程 ASP. ...
- 使用Beautiful Soup编写一个爬虫 系列随笔汇总
这几篇博文只是为了记录学习Beautiful Soup的过程,不仅方便自己以后查看,也许能帮到同样在学习这个技术的朋友.通过学习Beautiful Soup基础知识 完成了一个简单的爬虫服务:从all ...
- 利用Python进行数据分析 基础系列随笔汇总
一共 15 篇随笔,主要是为了记录数据分析过程中的一些小 demo,分享给其他需要的网友,更为了方便以后自己查看,15 篇随笔,每篇内容基本都是以一句说明加一段代码的方式, 保持简单小巧,看起来也清晰 ...
- 《高性能javascript》 领悟随笔之-------DOM编程篇(二)
<高性能javascript> 领悟随笔之-------DOM编程篇二 序:在javaSctipt中,ECMASCRIPT规定了它的语法,BOM实现了页面与浏览器的交互,而DOM则承载着整 ...
- 《高性能javascript》 领悟随笔之-------DOM编程篇
<高性能javascript> 领悟随笔之-------DOM编程篇一 序:在javaSctipt中,ECMASCRIPT规定了它的语法,BOM实现了页面与浏览器的交互,而DOM则承载着整 ...
随机推荐
- Linux安装Java
下载 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 解压 解压缩安装包 t ...
- Fish 下报错 Unsupported use of '||'. In fish, please use 'COMMAND; or COMMAND'.
在用fish激活virualenv虚拟环境时,使用命令: source ./venv/bin/activate 报错 ./venv/bin/activate (line 23): Unsupporte ...
- 【java高级编程】JDK和CGLIB动态代理区别
转载:https://blog.csdn.net/yhl_jxy/article/details/80635012 前言 JDK动态代理实现原理(jdk8):https://blog.csdn.net ...
- NodeJS 学习笔记
1. NodeJs的事件模型被称为非阻塞式IO或者事件驱动IO 2. Node.js 几乎每一个 API 都是支持回调函数的. 3. Node.js 基本上所有的事件机制都是用设计模式中观察者模式实现 ...
- CF559C Gerald and Giant Chess
题意 C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input ...
- linux 软件应用
grub2 安装grub2到某分区 mount /mnt/dev /dev/sdb2 //这里选择你刚才分区的第二个分区 sudo grub-install --root-directory=/mnt ...
- ie 9.10 兼容性问题 遇到的坑
1.ie9 中ajax 跨域调用时 error报错信息为”No Transport” 原因是 ajax跨域 本人用的是 cors解决方案 但是ie9一下版本 对cors默认是不允许的所以需要我们自 ...
- 纪念使用FTPClient工具所遇到的
我所使用的是org.apache.commons.net.ftp.FTPClient. 查了资料还有其余几个FTPClient,其余的先不展开. 1.ftpClient.changeWorkingD ...
- 什么是HDR?
参考:https://baijiahao.baidu.com/s?id=1606763887374415267&wfr=spider&for=pc HDR——即高动态范围图像(High ...
- LCD LED OLED区别 以及RGB、YUV和HSV颜色空间模型
led 液晶本身不发光,而是有背光作为灯源,白色是由红绿蓝三色组成,黑色是,液晶挡住了led灯光穿过显示器. lcd比led更薄. oled:显示黑色时,灯是灭的,所以显示黑色更深,效果更好. 这就不 ...