lightGBM

LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树。它可以说是分布式的,高效的,有以下优势:

  • 更快的训练效率

  • 低内存使用

  • 更高的准确率

  • 支持并行化学习

  • 可处理大规模数据

与常用的机器学习算法进行比较:速度飞起

已有的xgboost等模型存在一些缺点,如:

  • 每轮迭代时,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。

  • 预排序方法(pre-sorted):首先,空间消耗大。这样的算法需要保存数据的特征值,还保存了特征排序的结果(例如排序后的索引,为了后续快速的计算分割点),这里需要消耗训练数据两倍的内存。其次时间上也有较大的开销,在遍历每一个分割点的时候,都需要进行分裂增益的计算,消耗的代价大。

  • 对cache优化不友好。在预排序后,特征对梯度的访问是一种随机访问,并且不同的特征访问的顺序不一样,无法对cache进行优化。同时,在每一层长树的时候,需要随机访问一个行索引到叶子索引的数组,并且不同特征访问的顺序也不一样,也会造成较大的cache miss。

Lightgbm 针对上述问题进行改进。

lightGBM特点

概括来说,lightGBM主要有以下特点:

  • 基于Histogram的决策树算法

  • 带深度限制的Leaf-wise的叶子生长策略

  • 直方图做差加速

  • 直接支持类别特征(Categorical Feature)

  • Cache命中率优化

  • 基于直方图的稀疏特征优化

  • 多线程优化

Histogram算法

直方图算法的基本思想:先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图。遍历数据时,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点。

带深度限制的Leaf-wise的叶子生长策略

Level-wise过一次数据可以同时分裂同一层的叶子,容易进行多线程优化,也好控制模型复杂度,不容易过拟合。但实际上Level-wise是一种低效算法,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销,因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。

Leaf-wise则是一种更为高效的策略:每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后分裂,如此循环。因此同Level-wise相比,在分裂次数相同的情况下,Leaf-wise可以降低更多的误差,得到更好的精度。

Leaf-wise的缺点:可能会长出比较深的决策树,产生过拟合。因此LightGBM在Leaf-wise之上增加了一个最大深度限制,在保证高效率的同时防止过拟合。

lightGBM调参

主要参数:

(1)num_leaves

LightGBM使用的是leaf-wise的算法,因此在调节树的复杂程度时,使用的是num_leaves而不是max_depth。

大致换算关系:num_leaves = 2^(max_depth)

(2)样本分布非平衡数据集:可以param[‘is_unbalance’]=’true’

(3)Bagging参数:bagging_fraction+bagging_freq(必须同时设置)、feature_fraction

(4)min_data_in_leaf、min_sum_hessian_in_leaf

(主要内容源自 : https://blog.csdn.net/niaolianjiulin/article/details/76584785,非盈利引用,笔记备忘)

待续...

Lightgbm 随笔的更多相关文章

  1. AI人工智能系列随笔

    初探 AI人工智能系列随笔:syntaxnet 初探(1)

  2. 【置顶】CoreCLR系列随笔

    CoreCLR配置系列 在Windows上编译和调试CoreCLR GC探索系列 C++随笔:.NET CoreCLR之GC探索(1) C++随笔:.NET CoreCLR之GC探索(2) C++随笔 ...

  3. C++随笔:.NET CoreCLR之GC探索(4)

    今天继续来 带大家讲解CoreCLR之GC,首先我们继续看这个GCSample,这篇文章是上一篇文章的继续,如果有不清楚的,还请翻到我写的上一篇随笔.下面我们继续: // Initialize fre ...

  4. C++随笔:从Hello World 探秘CoreCLR的内部(1)

    紧接着上次的问题,上次的问题其实很简单,就是HelloWorld.exe运行失败,而本文的目的,就是成功调试HelloWorld这个控制台应用程序. 通过我的寻找,其实是一个名为TryRun的文件出了 ...

  5. ASP.NET MVC 系列随笔汇总[未完待续……]

    ASP.NET MVC 系列随笔汇总[未完待续……] 为了方便大家浏览所以整理一下,有的系列篇幅中不是很全面以后会慢慢的补全的. 学前篇之: ASP.NET MVC学前篇之扩展方法.链式编程 ASP. ...

  6. 使用Beautiful Soup编写一个爬虫 系列随笔汇总

    这几篇博文只是为了记录学习Beautiful Soup的过程,不仅方便自己以后查看,也许能帮到同样在学习这个技术的朋友.通过学习Beautiful Soup基础知识 完成了一个简单的爬虫服务:从all ...

  7. 利用Python进行数据分析 基础系列随笔汇总

    一共 15 篇随笔,主要是为了记录数据分析过程中的一些小 demo,分享给其他需要的网友,更为了方便以后自己查看,15 篇随笔,每篇内容基本都是以一句说明加一段代码的方式, 保持简单小巧,看起来也清晰 ...

  8. 《高性能javascript》 领悟随笔之-------DOM编程篇(二)

    <高性能javascript> 领悟随笔之-------DOM编程篇二 序:在javaSctipt中,ECMASCRIPT规定了它的语法,BOM实现了页面与浏览器的交互,而DOM则承载着整 ...

  9. 《高性能javascript》 领悟随笔之-------DOM编程篇

    <高性能javascript> 领悟随笔之-------DOM编程篇一 序:在javaSctipt中,ECMASCRIPT规定了它的语法,BOM实现了页面与浏览器的交互,而DOM则承载着整 ...

随机推荐

  1. 关于Object.keys()和for in的区别

    今天见到一道面试题让说一说Object.keys()和for in的区别,顿时有些发懵“What's Object.keys?”我立马上网搜了一下,大致作用也是做遍历,参数是一个对象,返回值是一个数组 ...

  2. sklearn learn preprocessing

    train_test_split sklearn.model_selection.train_test_split(*arrays, test_size(float,int/None),#defaul ...

  3. robotframework中的清除输入框输入值

    业务需求 当该输入框输入之后,联动某一个按钮高亮,输入框为空的时候,该按钮置灰 需要将输入框清空,清空的办法 1.直接将输入框赋值为${empty} 如:input Text ${loactor} $ ...

  4. Java(异常、枚举)

    异常 在程序执行过程中由于设计或设备原因导致的程序中断的异常现象叫做异常 在try-catch-finally代码块中,finally是一定会执行的部分,如果finally中有return部分,则一定 ...

  5. How To Add Custom Build Steps and Commands To setup.py

    转自:https://jichu4n.com/posts/how-to-add-custom-build-steps-and-commands-to-setuppy/ A setup.py scrip ...

  6. [转]Java调用Javascript、Python算法总结

    最近项目中经常需要将Javascript或者Python中的算法发布为服务,而发布Tomcat服务则需要在Java中调用这些算法,因此就不免要进行跨语言调用,即在Java程序中调用这些算法. 不管是调 ...

  7. java-新建简单的Web项目

    参考链接: https://www.cnblogs.com/silentdoer/articles/7134332.html web.xml: <?xml version="1.0&q ...

  8. python 数字以及字符串(方法总结,有的可能理解错误)

    数字类型(int): 在python 2中,数字类型可以分为整形,长整形,浮点型,以及复数.在python3中都是整形和长整形都称之为整形,且python3中没有限制. 1.int方法使用,用于转换字 ...

  9. ss - linux网络工具

    用以替代netstat 参看 http://www.cnblogs.com/peida/archive/2013/03/11/2953420.html 常用命令: ss -ptl | grep 991 ...

  10. 黄聪:C#获取网页HTML内容的三种方式

    C#通常有三种方法获取网页内容,使用WebClient.WebBrowser或者HttpWebRequest/HttpWebResponse. 方法一:使用WebClient static void ...