hdu5017 Ellipsoid (模拟退火)
Ellipsoid
题目描述
- 给定。一个要满足的椭球的方程\(ax^2+by^2+cz^2+dyz+exz+fxy=1\)
- 求球面上一个点到原点\((0,0,0)\)的距离最小。
- 有多组输入数据
解题思路
- 这题有一个麻烦的地方: 如何求满足椭球方程的点!
- 那就只能用自己浅薄的知识:求根公式。
- 我们先随机x坐标和y坐标,再带入到方程中,用求根公式算出z坐标。
- 这样就能保证所扩展的新状态一定满足条件。
- 之后的更新就和普通的模拟退火一样了。
- 具体求根方法,按照程序来看吧。反正就是移个项之后带公式。
代码
#include<bits/stdc++.h>
using namespace std;
inline void read(int &x)
{
x=0;
static int p;p=1;
static char c;c=getchar();
while(!isdigit(c)){if(c=='-')p=-1;c=getchar();}
while(isdigit(c)) {x=(x<<1)+(x<<3)+(c-48);c=getchar();}
x*=p;
}
double a,b,c,d,e,f;
double ansx,ansy,ansz;
const double eps=1e-10;
double dis(double x,double y,double z)
{
return sqrt(x*x+y*y+z*z);
}
double calc(double x,double y)
{
double A=c;
double B=d*y+e*x;
double C=a*x*x+b*y*y+f*x*y-1.0;
double delta=B*B-4.0*A*C;
if(delta<0)return 210000000.0;
double x1=(-B+sqrt(delta))/(2.0*A);
double x2=(-B-sqrt(delta))/(2.0*A);
if(dis(x,y,x1)>dis(x,y,x2))return x2;
return x1;
}
void MNTH()
{
for(int times=1;times<=1;times++)
{
double T=10000;
while(T>eps)
{
double nowx=ansx+(rand()*2-RAND_MAX)*T;
double nowy=ansy+(rand()*2-RAND_MAX)*T;
double nowz=calc(nowx,nowy);
if(nowz==210000000.0){T*=0.99;continue;}
double delta=dis(nowx,nowy,nowz)-dis(ansx,ansy,ansz);
if(delta<0)ansx=nowx,ansy=nowy,ansz=nowz;
else if(exp(delta/T)*RAND_MAX<rand())ansx=nowx,ansy=nowy,ansz=nowz;
T*=0.99;
}
}
printf("%.6lf\n",dis(ansx,ansy,ansz));
}
int main()
{
srand(19890604);
while(scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f)!=EOF)
{
ansx=0;
ansy=0;
ansz=sqrt(1.0/c);
MNTH();
}
return 0;
}
hdu5017 Ellipsoid (模拟退火)的更多相关文章
- ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)
---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...
- HDU 5017 Ellipsoid 模拟退火第一题
为了补这题,特意学了下模拟退火算法,感觉算法本身不是很难,就是可能降温系数,步长等参数不好设置. 具体学习可以参见: http://www.cnblogs.com/heaad/archive/2010 ...
- hdu5017 Ellipsoid(旋转)
比赛的时候跳进这个大坑里,最后代码是写出来了.看到好像很多都是模拟退火做的,下面提供一个奇怪的思路吧. ax^2+by^2+cz^2+dyz+exz+fxy=1(*) 通过一些奇特的YY我们可以知道这 ...
- HDU - 5017 Ellipsoid(模拟退火法)
Problem Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distance bet ...
- 模拟退火算法(西安网选赛hdu5017)
Ellipsoid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total ...
- HDU - 5017 Ellipsoid(模拟退火)
题意 给一个三维椭球面,求球面上距离原点最近的点.输出这个距离. 题解 模拟退火. 把\(z = f(x, y)\)函数写出来,这样通过随机抖动\(x\)和\(y\)坐标就能求出\(z\). 代码 / ...
- hdu 5017 Ellipsoid(西安网络赛 1011)
Ellipsoid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total ...
- HDOJ 5017 Ellipsoid
第一次尝试模拟退火..... Ellipsoid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java ...
- bzoj3680模拟退火
看题意就是一道数学物理题,带权费马点 --这怎么是数学了,这也是物理的 所以要用物理方法,比如FFF 国际著名oi选手miaom曾说 模拟退火初温可以低,但是最好烧个几千次 国际著名物理课代表+1 ...
随机推荐
- 我们为什么要使用List和Set(List,Set详解)
1.集合概述 类图 集合和数组的区别? 集合基本方法 集合特有的遍历方式? public static void main(String[] args) { //创建集合对象 Collection c ...
- 三、如何设置npm镜像
一.临时使用 npm --registry https://registry.npm.taobao.org install express 二.永久使用 npm config set registry ...
- react双组件传值和传参
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- jquery on绑定事件
描述:给一个或多个元素(当前的或未来的)的一个或多个事件绑定一个事件处理函数.(1.7版本开始支持,是 bind().live() 和 delegate() 方法的新的替代品) 语法:.on( eve ...
- Linux 查询oracle错误日志&警告日志
1 通过命令查看错误日志目录:show parameter background_dump_dest /usr/oracle/app/diag/rdbms/orcl/orcl/trace 2 根据 ...
- Windows BAT 命令下del 与 rd 命令
https://blog.csdn.net/jigetage/article/details/81180757 RD 与 DEL 命令 windows bat 目录和文件的删除处理. 命令:RD,删除 ...
- [转帖]xargs命令详解,xargs与管道的区别
xargs命令详解,xargs与管道的区别 https://www.cnblogs.com/wangqiguo/p/6464234.html 之前一直说要学习一下 xargs 到现在为止也没学习.. ...
- Day 4-8 hashlib加密模块
HASH Hash,一般翻译做“散列”,也有直接音译为”哈希”的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值.这种转换是一种压缩映射 ...
- C# Note8: 设计模式全解
前言——资源说明 目前网上设计模式的介绍可谓非常之多(各种编程语言的版本),其中不乏精细之作,本文的目的在于搜集和整理C#或C++的设计模式,毕竟思想还是共通的! 设计模式的分类 创建型模式,共五种: ...
- webpack+vue 我的视角(持续更新)
最近一直在研究webpack+vue的组合拳,现在分享一下: webpack就是一个项目管理工具,可以各种模块化加载,然后压缩,当然还有热加载技术(时灵时不灵..) vue是mv*模式的框架,组件化开 ...