Ellipsoid

原题链接

题目描述

  • 给定。一个要满足的椭球的方程\(ax^2+by^2+cz^2+dyz+exz+fxy=1\)
  • 求球面上一个点到原点\((0,0,0)\)的距离最小。
  • 有多组输入数据

解题思路

  • 这题有一个麻烦的地方: 如何求满足椭球方程的点!
  • 那就只能用自己浅薄的知识:求根公式。
  • 我们先随机x坐标和y坐标,再带入到方程中,用求根公式算出z坐标。
  • 这样就能保证所扩展的新状态一定满足条件。
  • 之后的更新就和普通的模拟退火一样了。
  • 具体求根方法,按照程序来看吧。反正就是移个项之后带公式。

代码

#include<bits/stdc++.h>
using namespace std;
inline void read(int &x)
{
x=0;
static int p;p=1;
static char c;c=getchar();
while(!isdigit(c)){if(c=='-')p=-1;c=getchar();}
while(isdigit(c)) {x=(x<<1)+(x<<3)+(c-48);c=getchar();}
x*=p;
}
double a,b,c,d,e,f;
double ansx,ansy,ansz;
const double eps=1e-10;
double dis(double x,double y,double z)
{
return sqrt(x*x+y*y+z*z);
}
double calc(double x,double y)
{
double A=c;
double B=d*y+e*x;
double C=a*x*x+b*y*y+f*x*y-1.0;
double delta=B*B-4.0*A*C;
if(delta<0)return 210000000.0;
double x1=(-B+sqrt(delta))/(2.0*A);
double x2=(-B-sqrt(delta))/(2.0*A);
if(dis(x,y,x1)>dis(x,y,x2))return x2;
return x1;
}
void MNTH()
{
for(int times=1;times<=1;times++)
{
double T=10000;
while(T>eps)
{
double nowx=ansx+(rand()*2-RAND_MAX)*T;
double nowy=ansy+(rand()*2-RAND_MAX)*T;
double nowz=calc(nowx,nowy);
if(nowz==210000000.0){T*=0.99;continue;}
double delta=dis(nowx,nowy,nowz)-dis(ansx,ansy,ansz);
if(delta<0)ansx=nowx,ansy=nowy,ansz=nowz;
else if(exp(delta/T)*RAND_MAX<rand())ansx=nowx,ansy=nowy,ansz=nowz;
T*=0.99;
}
}
printf("%.6lf\n",dis(ansx,ansy,ansz));
}
int main()
{
srand(19890604);
while(scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f)!=EOF)
{
ansx=0;
ansy=0;
ansz=sqrt(1.0/c);
MNTH();
}
return 0;
}

hdu5017 Ellipsoid (模拟退火)的更多相关文章

  1. ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)

    ---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...

  2. HDU 5017 Ellipsoid 模拟退火第一题

    为了补这题,特意学了下模拟退火算法,感觉算法本身不是很难,就是可能降温系数,步长等参数不好设置. 具体学习可以参见: http://www.cnblogs.com/heaad/archive/2010 ...

  3. hdu5017 Ellipsoid(旋转)

    比赛的时候跳进这个大坑里,最后代码是写出来了.看到好像很多都是模拟退火做的,下面提供一个奇怪的思路吧. ax^2+by^2+cz^2+dyz+exz+fxy=1(*) 通过一些奇特的YY我们可以知道这 ...

  4. HDU - 5017 Ellipsoid(模拟退火法)

    Problem Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distance bet ...

  5. 模拟退火算法(西安网选赛hdu5017)

    Ellipsoid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  6. HDU - 5017 Ellipsoid(模拟退火)

    题意 给一个三维椭球面,求球面上距离原点最近的点.输出这个距离. 题解 模拟退火. 把\(z = f(x, y)\)函数写出来,这样通过随机抖动\(x\)和\(y\)坐标就能求出\(z\). 代码 / ...

  7. hdu 5017 Ellipsoid(西安网络赛 1011)

    Ellipsoid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  8. HDOJ 5017 Ellipsoid

    第一次尝试模拟退火..... Ellipsoid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java ...

  9. bzoj3680模拟退火

    看题意就是一道数学物理题,带权费马点   --这怎么是数学了,这也是物理的 所以要用物理方法,比如FFF 国际著名oi选手miaom曾说 模拟退火初温可以低,但是最好烧个几千次 国际著名物理课代表+1 ...

随机推荐

  1. iptables的增删改查

    iptables是linux系统自带的防火墙,功能强大,学习起来需要一段时间,下面是一些习iptables的时候的记录.如果iptables不熟悉的话可以用apf,是一款基于iptables的防火墙, ...

  2. sql 查询优化小计

    好久没更博了,偷偷的抽时间写一下. 早上开始working的时候,发现一个页面加载很慢,经排查是昨天写的一条联合查询的sql导致的.于是着手优化! 首先想到的是在join的时候,减少表体积之后再进行关 ...

  3. jabRef里引用的相邻同名作者变横线

    用jabRef引用同名作者的文章时,出现了第二个文章的作者变成了横线,在搜了相关资料后,发现作如下修改可避免: 1.在.bib文件中加入开关,并修改默认配置: @IEEEtranBSTCTL{IEEE ...

  4. cmd远程连接oracle数据库

  5. display设置弹性盒布局

    转自:http://blog.csdn.net/itbwy/article/details/52648711 网页布局(layout)是CSS的一个重点应用. 布局的传统解决方案,基于盒状模型,依赖  ...

  6. 牛客练习赛13F m皇后

    题目链接:https://ac.nowcoder.com/acm/contest/70/F 题目大意: 略 分析: 可以分成四步计算冲突:水平方向,垂直方向,左斜线方向,右斜线方向.只要会处理水平方向 ...

  7. 除了binlog2sql工具外,使用python脚本闪回数据(数据库误操作)

    利用binlog日志恢复数据库误操作数据 在人工手动进行一些数据库写操作的时候(比方说数据修改),尤其是一些不可控的批量更新或删除,通常都建议备份后操作.不过不怕万一,就怕一万,有备无患总是好的.在线 ...

  8. 如何在网页中用echarts图表插件做出静态呈现效果

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  9. 去掉dede织梦position当前位置最后一个箭头的方法

    理论是,dede的当前位置标签{dedefield name='position'}结构是 首页 > 主栏目 > 子栏目 > ,这就说明,而箭头符号字段数据都是在后台设置后存储在数据 ...

  10. 如何在mac下安装php

    步骤如下: 1.下载php源码并解压 2.进入php源码并configure 3.安装openssl 4.sudo make及make test 5.sudo make install 具体命令如下: ...