题意

题目链接

Sol

复习一下01分数规划

设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\)。可以二分一个答案\(k\),我们需要检查\(\sum \frac{a_i}{b_i} \geqslant k\)是否合法,移向之后变为\(\sum_{a_i} - k\sum_{b_i} \geqslant 0\)。把\(k * b_i\)加在出发点的点权上检查一下有没有负环就行了

#include<bits/stdc++.h>
#define Pair pair<int, double>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4001, mod = 998244353, INF = 2e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
vector<Pair> v[MAXN];
double a[MAXN], dis[MAXN];
int vis[MAXN], times[MAXN];
bool SPFA(int S, double k) {
queue<int> q; q.push(S);
for(int i = 1; i <= N; i++) vis[i] = 0, times[i] = 0, dis[i] = 0;
times[S]++;
while(!q.empty()) {
int p = q.front(); q.pop(); vis[p] = 0;
for(auto &sta : v[p]) {
int to = sta.fi; double w = sta.se;
if(chmax(dis[to], dis[p] + a[p] - k * w)) {
if(!vis[to]) q.push(to), vis[to] = 1, times[to]++;
if(times[to] > N) return 1;
}
}
}
return 0;
}
bool check(double val) {
for(int i = 1; i <= N; i++)
if(SPFA(i, val)) return 1;
return 0;
}
signed main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) a[i] = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), z = read();
v[x].push_back({y, z});
}
double l = -1e9, r = 1e9;
while(r - l > eps) {
double mid = (l + r) / 2;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.2lf", l);
return 0;
}

洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)的更多相关文章

  1. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...

  2. 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  3. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  4. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解

    题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...

  5. POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows

    一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...

  6. 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...

  7. P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows [](https://www.cnblogs.com/images/cnblogs_com/Tony-Double-Sky ...

  8. [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  9. Luogu 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    01分数规划复习. 这东西有一个名字叫做最优比率环. 首先这个答案具有单调性,我们考虑如何检验. 设$\frac{\sum_{i = 1}^{n}F_i}{\sum_{i = 1}^{n}T_i} = ...

随机推荐

  1. MyBatis 的动态 SQL 使用说明

    动态SQL简介 参考文档地址:http://www.mybatis.org/mybatis-3/zh/dynamic-sql.html MyBatis 的强大特性之一便是它的动态 SQL.如果你有使用 ...

  2. 大道至简第一章--java伪代码读后感

    import java.大道至简.编程的精义; //愚公移山 public class 愚公移山 { public static void main(String[] args) { //惩山北之塞, ...

  3. numpy创建矩阵常用方法

    numpy创建矩阵常用方法 arange+reshape in: n = np.arange(0, 30, 2)# start at 0 count up by 2, stop before 30 n ...

  4. Ubuntu 18.04基本配置

    允许WinSCP使用root连接 默认是不允许的,具体方法出自这里(传送门),修改ssh配置,在/etc/ssh下,修改sshd_config文件 PermitRootLogin yes 即可.默认不 ...

  5. 剑指offer【03】- 从尾到头打印链表(4种实现方法)

    题目:从尾到头打印链表 考点:链表 题目描述:输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. 法一:ArrayList头插法 /** * public class ListNode ...

  6. mysql 开发基础系列19 触发器

    触发器是与表有关的数据库对象,触发器只能是针对创建的永久表,而不能是临时表. 1.1 创建触发器 -- 语法: CREATE TRIGGER trigger_name trigger_time tri ...

  7. EL表达式jsp页面double小数点后保留两位

    EL表达式jsp页面double小数点后保留两位,四舍五入 <fmt:formatNumber type="number" value="${member.logi ...

  8. java字符流操作flush()方法及其注意事项

    java字符流操作flush()方法及其注意事项   flush()方法介绍 查阅文档可以发现,IO流中每一个类都实现了Closeable接口,它们进行资源操作之后都需要执行close()方法将流关闭 ...

  9. java中Char到底是什么格式的编码

    文本处理中经常有这样的逻辑: String s = new String(bts, "UTF-8"); 看String源代码,里面是一个char[],将bts按照某种编码方式,变成 ...

  10. python三大神器之virtualenv

    virtualenv virtualenv用来管理python项目环境,隔离出一个只属于这个项目的虚拟python环境(windows和Linux用法一样). 首先你需要安装virtualenv模块 ...