题意

题目链接

Sol

复习一下01分数规划

设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\)。可以二分一个答案\(k\),我们需要检查\(\sum \frac{a_i}{b_i} \geqslant k\)是否合法,移向之后变为\(\sum_{a_i} - k\sum_{b_i} \geqslant 0\)。把\(k * b_i\)加在出发点的点权上检查一下有没有负环就行了

#include<bits/stdc++.h>
#define Pair pair<int, double>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4001, mod = 998244353, INF = 2e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
vector<Pair> v[MAXN];
double a[MAXN], dis[MAXN];
int vis[MAXN], times[MAXN];
bool SPFA(int S, double k) {
queue<int> q; q.push(S);
for(int i = 1; i <= N; i++) vis[i] = 0, times[i] = 0, dis[i] = 0;
times[S]++;
while(!q.empty()) {
int p = q.front(); q.pop(); vis[p] = 0;
for(auto &sta : v[p]) {
int to = sta.fi; double w = sta.se;
if(chmax(dis[to], dis[p] + a[p] - k * w)) {
if(!vis[to]) q.push(to), vis[to] = 1, times[to]++;
if(times[to] > N) return 1;
}
}
}
return 0;
}
bool check(double val) {
for(int i = 1; i <= N; i++)
if(SPFA(i, val)) return 1;
return 0;
}
signed main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) a[i] = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), z = read();
v[x].push_back({y, z});
}
double l = -1e9, r = 1e9;
while(r - l > eps) {
double mid = (l + r) / 2;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.2lf", l);
return 0;
}

洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)的更多相关文章

  1. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...

  2. 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  3. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  4. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解

    题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...

  5. POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows

    一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...

  6. 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...

  7. P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows [](https://www.cnblogs.com/images/cnblogs_com/Tony-Double-Sky ...

  8. [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  9. Luogu 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    01分数规划复习. 这东西有一个名字叫做最优比率环. 首先这个答案具有单调性,我们考虑如何检验. 设$\frac{\sum_{i = 1}^{n}F_i}{\sum_{i = 1}^{n}T_i} = ...

随机推荐

  1. 第65节:Java后端的学习之Spring基础

    Java后端的学习之Spring基础 如果要学习spring,那么什么是框架,spring又是什么呢?学习spring中的ioc和bean,以及aop,IOC,Bean,AOP,(配置,注解,api) ...

  2. 把ajax包装成promise的形式(2)

    概述 为了体验promise的原理,我打算自己把ajax包装成promise的形式.主要希望实现下列功能: // 1.使用success和error进行链式调用,并且可以在后面加上无限个 promis ...

  3. Python开发爆破工具

    上一篇讲到了如何用Python开发字典,而当我们手里有了字典 就可以进一步去做爆破的任务了,可以用现成的工具,当然也可以自己写 接下来我就要一步一步来写爆破工具! 爆破MySQL: 想要爆破MySQL ...

  4. log4j日志输出到日志文件中和控制台中 +log4j配置详解

    1.引入log4j的jar包 https://mvnrepository.com/,可以找到log4j的jar和依赖. 2.创建log4j.properties,并配置log4j #设置日志的级别 , ...

  5. 一文搞懂 Linux network namespace

    本文首发于我的公众号 Linux云计算网络(id: cloud_dev),专注于干货分享,号内有 10T 书籍和视频资源,后台回复「1024」即可领取,欢迎大家关注,二维码文末可以扫. 本文通过 IP ...

  6. ionic cordova platform add android Cordova failed to install plugin Error: ENOENT: no such file or directory AndroidManifest.xml

    问题描述: 在ionic 项目中出现编译android 的时候 出现 Cordova failed to install plugin  Error: ENOENT: no such file or ...

  7. 微信JSAPI支付回调

    在微信支付中,当用户支付成功后,微信会把相关支付结果和用户信息发送给商户,商户需要接收处理,并返回应答. 在经历了千幸万苦之,填完了所有的JSAPI支付的坑后(微信JSAPI支付 跟 所遇到的那些坑) ...

  8. RESTful规范1

    RESTful规范 一 什么是RESTful REST与技术无关,代表的是一种软件架构风格,REST是Representational State Transfer的简称,中文翻译为"表征状 ...

  9. 【Guava】使用Guava的RateLimiter做限流

    一.常见的限流算法 目前常用的限流算法有两个:漏桶算法和令牌桶算法. 1.漏桶算法 漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水.当请求过多时,水直接溢出.可以看出,漏桶算法可以强制 ...

  10. C++版 - 剑指offer 面试题7:用两个栈实现队列 题解

    用两个栈实现队列 提交网址:  http://www.nowcoder.com/practice/54275ddae22f475981afa2244dd448c6?tpId=13&tqId=1 ...