洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)
题意
Sol
复习一下01分数规划
设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\)。可以二分一个答案\(k\),我们需要检查\(\sum \frac{a_i}{b_i} \geqslant k\)是否合法,移向之后变为\(\sum_{a_i} - k\sum_{b_i} \geqslant 0\)。把\(k * b_i\)加在出发点的点权上检查一下有没有负环就行了
#include<bits/stdc++.h>
#define Pair pair<int, double>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4001, mod = 998244353, INF = 2e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
vector<Pair> v[MAXN];
double a[MAXN], dis[MAXN];
int vis[MAXN], times[MAXN];
bool SPFA(int S, double k) {
queue<int> q; q.push(S);
for(int i = 1; i <= N; i++) vis[i] = 0, times[i] = 0, dis[i] = 0;
times[S]++;
while(!q.empty()) {
int p = q.front(); q.pop(); vis[p] = 0;
for(auto &sta : v[p]) {
int to = sta.fi; double w = sta.se;
if(chmax(dis[to], dis[p] + a[p] - k * w)) {
if(!vis[to]) q.push(to), vis[to] = 1, times[to]++;
if(times[to] > N) return 1;
}
}
}
return 0;
}
bool check(double val) {
for(int i = 1; i <= N; i++)
if(SPFA(i, val)) return 1;
return 0;
}
signed main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) a[i] = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), z = read();
v[x].push_back({y, z});
}
double l = -1e9, r = 1e9;
while(r - l > eps) {
double mid = (l + r) / 2;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.2lf", l);
return 0;
}
洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)的更多相关文章
- 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows
P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...
- 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解
题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...
- POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows
一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...
- 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...
- P2868 [USACO07DEC]观光奶牛Sightseeing Cows
P2868 [USACO07DEC]观光奶牛Sightseeing Cows [](https://www.cnblogs.com/images/cnblogs_com/Tony-Double-Sky ...
- [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- Luogu 2868 [USACO07DEC]观光奶牛Sightseeing Cows
01分数规划复习. 这东西有一个名字叫做最优比率环. 首先这个答案具有单调性,我们考虑如何检验. 设$\frac{\sum_{i = 1}^{n}F_i}{\sum_{i = 1}^{n}T_i} = ...
随机推荐
- [Jenkins][Git]ssh原理以及与https的区别
-------------------------------------------------------------------- 本文参考多篇文章结合自身情况完成,可自由转载,需保留本文出处! ...
- Java后端工程师必备书单(含大后端方向相关书籍)
学习Java和其他技术的资源其实非常多,但是我们需要取其精华去其糟粕,选择那些最好的,最适合我们的,同时也要由浅入深,先易后难.基于这样的一个标准,我在这里为大家提供一份Java的学习资源清单. 一: ...
- [转&精]IO_STACK_LOCATION与IRP的一点笔记
IO_STACK_LOCATION和IRP算是驱动中两个很基础的东西,为了理解这两个东西,找了一点资料. 1. IRP可以看成是Win32窗口程序中的消息(Message),DEVICE_OBJECT ...
- python 闯关之路二(模块的应用)
1.有如下字符串:n = "路飞学城"(编程题) - 将字符串转换成utf-8的字符编码的字节,再将转换的字节重新转换为utf-8的字符编码的字符串 - 将字符串转换成gbk的字符 ...
- 【Vue.js】vue引入组件报错:该组件未注册?
[Vue warn]: Unknown custom element: <QuestionnaireOption> - did you register the component cor ...
- 【Go】优雅的读取http请求或响应的数据-续
原文链接:https://blog.thinkeridea.com/201902/go/you_ya_de_du_qu_http_qing_qiu_huo_xiang_ying_de_shu_ju_2 ...
- 【golang-GUI开发】qt之signal和slot(一)
想了很久,我决定还是先从signal和slot(信号槽)开始讲起. signal和slot大家一定不陌生,先看一段示例(选自文档): class Counter : public QObject { ...
- js_ajax模拟form表单提交_多文件上传_支持单个删除
需求场景: 用一个input type="file"按钮上传多张图片,可多次上传,可单独删除,最后使用ajax模拟form表单提交功能提交到指定方法中: 问题:由于只有一个file ...
- C#正则表达式。
什么是正则表达式: 正则表达式是用来进行文本处理的技术,是语言无关的. 是由普通字符和特殊字符组成的文字模式,用来描述字符串的特征. 元字符: 1. . : 除 \n 以外的任意的单个字符. ...
- JavaScript匿名函数入门。
1.第一种匿名函数的使用:简单的调用 var f=function(){ return 'Hello'; }; //匿名函数没法调用,只能赋值,所以作为赋值语句后面得加分号 var result= ...