题意

题目链接

Sol

复习一下01分数规划

设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\)。可以二分一个答案\(k\),我们需要检查\(\sum \frac{a_i}{b_i} \geqslant k\)是否合法,移向之后变为\(\sum_{a_i} - k\sum_{b_i} \geqslant 0\)。把\(k * b_i\)加在出发点的点权上检查一下有没有负环就行了

#include<bits/stdc++.h>
#define Pair pair<int, double>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4001, mod = 998244353, INF = 2e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
vector<Pair> v[MAXN];
double a[MAXN], dis[MAXN];
int vis[MAXN], times[MAXN];
bool SPFA(int S, double k) {
queue<int> q; q.push(S);
for(int i = 1; i <= N; i++) vis[i] = 0, times[i] = 0, dis[i] = 0;
times[S]++;
while(!q.empty()) {
int p = q.front(); q.pop(); vis[p] = 0;
for(auto &sta : v[p]) {
int to = sta.fi; double w = sta.se;
if(chmax(dis[to], dis[p] + a[p] - k * w)) {
if(!vis[to]) q.push(to), vis[to] = 1, times[to]++;
if(times[to] > N) return 1;
}
}
}
return 0;
}
bool check(double val) {
for(int i = 1; i <= N; i++)
if(SPFA(i, val)) return 1;
return 0;
}
signed main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) a[i] = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), z = read();
v[x].push_back({y, z});
}
double l = -1e9, r = 1e9;
while(r - l > eps) {
double mid = (l + r) / 2;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.2lf", l);
return 0;
}

洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)的更多相关文章

  1. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...

  2. 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  3. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  4. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解

    题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...

  5. POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows

    一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...

  6. 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...

  7. P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows [](https://www.cnblogs.com/images/cnblogs_com/Tony-Double-Sky ...

  8. [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  9. Luogu 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    01分数规划复习. 这东西有一个名字叫做最优比率环. 首先这个答案具有单调性,我们考虑如何检验. 设$\frac{\sum_{i = 1}^{n}F_i}{\sum_{i = 1}^{n}T_i} = ...

随机推荐

  1. postgresql 日志配置

    Postgresql日志收集   PG安装完成后默认不会记录日志,必须修改对应的(${PGDATA}/postgresql.conf)配置才可以,这里只介绍常用的日志配置. 1.logging_col ...

  2. python爬取猫眼电影top100

    最近想研究下python爬虫,于是就找了些练习项目试试手,熟悉一下,猫眼电影可能就是那种最简单的了. 1 看下猫眼电影的top100页面 分了10页,url为:https://maoyan.com/b ...

  3. C/C++结构体成员偏移量获取

    分析代码节选自muduo. 以下代码通过offsetof获取sin_family在sockaddr_in6中的字段偏移量. static_assert(offsetof(sockaddr_in6, s ...

  4. 分布式作业 Elastic Job 如何动态调整?

    前面分享了两篇分布式作业调度框架 Elastic Job 的介绍及应用实战. ElasticJob-分布式作业调度神器 分布式作业 Elastic Job 快速上手指南! Elastic Job 提供 ...

  5. sql server 高可用故障转移(5)

    测试故障转移群集报告 在SQL-CL01(hsr 50)进行故障转移群集的创建,如图下图所示,在SQL-CL01和SQL-CL02的“服务器管理”中右键点击“功能”,选择“添加功能 勾选故障转移群集  ...

  6. nohup & expect & netstat学习

    1.nohup 用途:不挂断地运行命令,通常加上‘&’命令,& 放在命令后面表示设置此进程为后台进程.分为两种情况,如下: 在不使用密码的情况下使用nohup,只需按如下形式即可: n ...

  7. linux读书笔记1

    (1)进入控制台命令快捷键:Ctrl+alt+F1~F7

  8. SpringMVC学习(三)———— springmvc的数据校验的实现

    一.什么是数据校验? 这个比较好理解,就是用来验证客户输入的数据是否合法,比如客户登录时,用户名不能为空,或者不能超出指定长度等要求,这就叫做数据校验. 数据校验分为客户端校验和服务端校验 客户端校验 ...

  9. 03_SQL server数据类型

    SQL server数据类型 String类型: 数据类型: 描述 存储 char(n) 固定长度的字符串.最多 8,000 个字符.定义类型为char(5),那么就表示该类型可以存储5个字符,即使存 ...

  10. 使用xmanager接收图形界面

    假设在win(192.168.0.101)上安装了xmanager,想接收来自linux(192.168.100.16)的图形界面. 1.在win端打开Xmanager - Passive 2.在li ...