题意

用 \(m\) 种颜色,给 \(n\) 个点的无向完全图的 \(\frac{n(n-1)}{2}\) 条边染色,两种方案相同当且仅当一种方案交换一些点的编号后可以变成另一种方案。问有多少本质不同的染色方案。

\(n\le 53, m\le 1000, n<mod\le 10^9\) 且 \(mod\) 为质数。

分析

  • 考虑 \(Polya​\) 定理。
  • 假设已经枚举了一个点置换(对应唯一一种边置换),能否快速求出对应边的置换的循环个数?
  • 对于两个点的循环(设长度分别为 \(l_1,l_2\)),它们之间的边构成了 \(\frac{l_1l_2}{lcm(l_1,l_2)}=gcd(l_1,l_2)​\) 个边的循环。
  • 对于一个点循环内部的边:假设初始在序列上选定的两个点的位置相差了 \(x\) ,在右端点转回序列左端后差值会变成 \(n-x\) 。可以得到,当且仅当 \(2x=n\) 时,循环长度为 \(\frac{n}{2}\)(无向图) ,其余时刻为 \(n\) 。所以当 \(n\) 为偶数时的边循环个数还要加 1。由于总边数为 \(\frac{n(n-1)}{2}\) ,所以边循环个数总可以写成 \(\lfloor\frac{n}{2}\rfloor​\) 的形式。
  • 那么对于一种点置换,假设其所有循环满足 \(l_1\le l_2\le \cdots\le l_k\) ,这样的置换个数为 \(\frac{n!}{l_1l_2\cdots l_kS_1!S_2!\cdots S_{max}!}\) ,其中 \(S_i\) 表示长度为 \(i\) 的循环个数。为什么是 \(l_i\) 而不是 \(l_i!\) 的原因是每次我们找 \(l_i\) 个位置作为一个循环之后,他们都连了一条指向其他位置的边,构成了一个环。环排列的个数是 \(\frac{n!}{n}=(n-1)!\) 。
  • 综上,对于一种点置换,对应边置换的循环个数为 \(\sum_{i=1}^k\lfloor\frac{l_i}{2}\rfloor+\sum_{i=1}^{k-1}\sum_{j=i+1}^kgcd(l_i,l_j)\) 。
  • 由于 \(n\le 53\) ,拆分的方案数在一个可接受的范围内。所以爆搜循环的拆分即可。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline bool Max(T &a, T b){return a < b ? a = b, 1 : 0;}
template <typename T> inline bool Min(T &a, T b){return a > b ? a = b, 1 : 0;}
const int N = 60;
int n, m, mod;
LL fac[N], invfac[N], inv[N], ans;
int g[N][N], stk[N], num[N];
LL Pow(LL a, LL b) {
LL res = 1ll;
for(; b; b >>= 1, a = a * a % mod) if(b & 1) res = res * a % mod;
return res;
}
void add(LL &a, LL b) {
a += b;
if(a >= mod) a -= mod;
}
void solve( int tp) {
re(num);
rep(i, 1, tp) num[stk[i]]++;
LL cnt = fac[n];
rep(i, 1, tp) cnt = cnt * inv[stk[i]] % mod;
rep(i, 1, n) cnt = cnt * invfac[num[i]] % mod;
LL c = 0;
rep(i, 1, tp) c = (c + stk[i] / 2) % (mod - 1);
rep(i, 1, tp - 1)
rep(j, i + 1, tp) c = (c + g[stk[i]][stk[j]]) % (mod - 1);
add(ans, cnt * Pow(m, c) % mod);
}
void dfs(int dep, int rest, int lst) {
if(!rest) {
solve(dep - 1);
return;
}
for(int i = lst; i <= rest; ++i) stk[dep] = i, dfs(dep + 1, rest - i, i);
}
int gcd(int a, int b) {
return !b ? a : gcd(b, a % b);
}
int main() {
n = gi(), m = gi(), mod = gi();
rep(i, 0, n)
rep(j, 0, n) g[i][j] = gcd(i, j);
inv[1] = fac[0] = invfac[0] = 1;
rep(i, 1, n) {
if(i ^ 1) inv[i] = (LL) (mod - mod / i) *inv[mod % i] % mod;
fac[i] = (LL) fac[i - 1] * i % mod;
invfac[i] = (LL) invfac[i - 1] * inv[i] % mod;
}
inv[0] = 1;
dfs(1, n, 1);
printf("%lld\n", ans * invfac[n] % mod);
return 0;
}

[SHOI2006]color 有色图[群论、组合计数]的更多相关文章

  1. bzoj 1815: [Shoi2006]color 有色图 置换群

    1815: [Shoi2006]color 有色图 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 136  Solved: 50[Submit][Stat ...

  2. BZOJ1815: [Shoi2006]color 有色图

    BZOJ1815: [Shoi2006]color 有色图 Description Input 输入三个整数N,M,P 1< = N <= 53 1< = M < = 1000 ...

  3. BZOJ 1815: [Shoi2006]color 有色图(Polya定理)

    题意 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图. 如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得 ...

  4. BZOJ 1815: [Shoi2006]color 有色图 [Polya DFS 重复合并]

    传送门 题意: 染色图是无向完全图,且每条边可被染成k种颜色中的一种.两个染色图是同构的,当且仅当可以改变一个图的顶点的编号,使得两个染色图完全相同.问N个顶点,k种颜色,本质不同的染色图个数(模质数 ...

  5. bzoj 1478: Sgu282 Isomorphism && 1815: [Shoi2006]color 有色图【dfs+polya定理】

    参考 https://wenku.baidu.com/view/fee9e9b9bceb19e8b8f6ba7a.html?from=search### 的最后一道例题 首先无向完全图是个若干点的置换 ...

  6. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  8. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  9. 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)

    [HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...

随机推荐

  1. js导出Excel表格

    js导出Excel表格 直接上代码: 红色部分:如果表格数据中有“1/1”这样的值,会在导出的Excel中转化为日期“1月1日”,所以才加上了红色那两句.如果返回值中没有这样的格式,红色部分可以不写. ...

  2. CSS之表格边框合并、兄弟标签外边距合并、父子标签的外边距合并

    本文内容: 表格边框合并 兄弟标签外边距合并 父子标签的外边距合并 首发日期:2018-05-01 表格边框合并: 发生情况: 当设置了cellpadding="0" cellsp ...

  3. java实现wc

    github项目传送门:https://github.com/yanghuipeng/wc 项目要求 wc.exe 是一个常见的工具,它能统计文本文件的字符数.单词数和行数.这个项目要求写一个命令行程 ...

  4. [katalon] 页面切换

    UI自动化测试过程中会涉及到需要切换多个页面, 如点击一个按钮之后跳转到新的页面, 后者A站点提交信息后,B站点审核. Katalon虽然不支持控制多个浏览器,但是支持处理tab切换. 核心方法是使用 ...

  5. 2018-05-27-computer-using-hints-电脑使用帮助[持续更新]

    layout: post title: 2018-05-27-computer-using-hints-电脑使用帮助 key: 20180527 tags: ubuntu cuda cudnn ten ...

  6. 基于Python3的漏洞检测工具 ( Python3 插件式框架 )

    目录 Python3 漏洞检测工具 -- lance screenshot requirements 关键代码 usage documents Any advice or sugggestions P ...

  7. STL之迭代器(iterator)

    1 头文件 所有容器有含有其各自的迭代器型别(iterator types),所以当你使用一般的容器迭代器时,并不需要含入专门的头文件.不过有几种特别的迭代器,例如逆向迭代器,被定义于<iter ...

  8. 语句调优基础知识-set statistics io on

    set statistics io on --清空缓存数据 dbcc dropcleanbuffers go --清空缓存计划 dbcc freeproccache go set statistics ...

  9. SQL Server 日常维护经典应用

    SQL Server日常维护常用的一些脚本整理. 1.sql server开启clr权限: GO RECONFIGURE GO ALTER DATABASE HWMESTC SET TRUSTWORT ...

  10. LeetCode算法题-Factorial Trailing Zeroes(Java实现)

    这是悦乐书的第183次更新,第185篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第42题(顺位题号是172).给定一个整数n,返回n!中的尾随零数.例如: 输入:3 输 ...