什么是RDD

RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。 
RDD的属性

一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。 
基本RDD操作 
创建RDD: 
1)读取外部数据集 
val file=sc.textFile(“hdfs://hadoop1:9000/input/word/word.txt”)

2)在驱动器程序中对一个集合进行并行化
val lines = sc.parallelize(List("pandas","i like pandas"))

RDD操作: 
RDD转化操作是返回一个新的RDD的操作,比如map()和filter() 
RDD行动操作则是向驱动器程序返回结果或把结果写入外部系统的操作,会触发实际的计算 
1)转化操作 
val inputRDD = sc.textFile(“hdfs://hadoop1:9000/input/word/word.txt”)

    val keyRDD = inputRDD.filter(line => line.contains("guofei"))

2)行动操作0
val keyRDD = inputRDD.filter(line => line.contains("guofei")) wantRDD.take(10).foreach(println)

常见的转化操作和行动操作 
1.转化操作 
map()与flatMap()区别 
flatMap 将函数应用于RDD中的每个元素,将返回的迭代器的所有的内容构成新的RDD,通常用来切分单词 
val lines = sc.parallelize(List(“come on”,”guofei”)) 
var words = lines.flatMap(line => line.split(” “)) 
words.collect()

map 将函数应用于RDD中的每个元素,将返回值构成新的RDD
var words1 = lines.map(line => line.split(" "))
words1.collect() filter 返回一个由通过传给filter()的函数的元素组成的RDD
val list = sc.parallelize(List(1,2,3,3))
val listFilter = list.filter(x => x != 1)
listFilter.collect() distinct 去重
val listDistinct = list.distinct()
listDistinct.collect() union() 生成一个包含俩哥哥RDD中所有元素的RDD
val list = sc.parallelize(List(3,4,5))
val list1 = sc.parallelize(List(1,2,3))
val union = list.union(list1)
union.collect() intersection() 求两个RDD共同的元素的RDD
list.intersection(list1).collect() subtract() 移除里一个RDD中的内容
list.subtract(list1).collect() cartesian() 与另一个RDD的笛卡儿积
list.cartesian(list1).collect()

2.行动操作 
reduce() 
val list = sc.parallelize(List(3,4,5)) 
list.reduce((x,y) => x + y)

collect() 返回RDD中的所有元素
count() RDD中的元素个数
countByValue() 各元素在RDD中出现的次数
take(num) 从RDD中返回num个数
top(num) RDD中返回最前面的num个元素
takeOrdered(num)(ordering) 从RDD中按照提供的舒徐返回最前见的num元素
reduce(func) 并行整合RDD中左右数据
fold(zero)(func) 和reduce一样,但是需要提供初始值
aggregate(zeroValue)(seqOp,combOp) 和reduce相似,但是通常返回不同类型的函数

键值对操作: 
创建Pair RDD

使用第一个单词作为键创建出一个pair RDD 
val file=sc.textFile(“hdfs://hadoop1:9000/input/word/word.txt”) 
file.map(x => (x.split(” “)(0),x)).collect()

Pair RDD的转化操作 
创建Pair 
val list1 = sc.parallelize(List((1,2),(3,4),(3,6))) 
list1.collect()

reduceByKey(func) 合并具有相同键的值 
list1.reduceByKey((x,y) => x+y).collect()

groupByKey() 对具有相同键的值进行分组 
list1.groupByKey.collect()

mapValues(func) 对pair RDD中的每个值应用一个函数而不改变键 
list1.mapValues(x => x+1).collect()

flatMapValues(func) 对pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键对记录。通常用于符号化 
list1.flatMapValues(x => (x to 5)).collect()

keys() 返回一个仅包含键的RDD 
list1.keys.collect()

values() 返回一个仅包含值得RDD 
list1.values.collect()

sortByKey() 返回一个根据键排序的RDD 
list1.sortByKey().collect()

针对两个pair RDD的转化操作 
val rdd = sc.parallelize(List((1,2),(3,4),(3,6))) 
val other = sc.parallelize(List((1,2)))

subtractByKey 删掉RDD中键与other中的键相同的元素 
rdd.subtractByKey(other).collect()

join 对两个RDD进行内连接 
rdd.join(other).collect()

leftOuterJoin() 对两个RDD进行连接操作,确保第二个RDD的键必须存在(左外连接) 
rdd.leftOuterJoin(other).collect()

cogroup() 将两个RDD中拥有相同键的数据分组到一起 
rdd.cogroup(other).collect()

Spark 基础及RDD基本操作的更多相关文章

  1. Spark笔记:RDD基本操作(上)

    本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当 ...

  2. Spark笔记:RDD基本操作(下)

    上一篇里我提到可以把RDD当作一个数组,这样我们在学习spark的API时候很多问题就能很好理解了.上篇文章里的API也都是基于RDD是数组的数据模型而进行操作的. Spark是一个计算框架,是对ma ...

  3. Spark基础和RDD

    spark 1. Spark的四大特性 速度快 spark比mapreduce快的两个原因 基于内存 1. mapreduce任务后期在计算的是时候,每一个job的输出结果都会落地到磁盘,后续有其他的 ...

  4. Spark RDD/Core 编程 API入门系列 之rdd实战(rdd基本操作实战及transformation和action流程图)(源码)(三)

    本博文的主要内容是: 1.rdd基本操作实战 2.transformation和action流程图 3.典型的transformation和action RDD有3种操作: 1.  Trandform ...

  5. Spark基础:(二)Spark RDD编程

    1.RDD基础 Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在分区的不同节点上. 用户可以通过两种方式创建RDD: (1)读取外部数据集====> ...

  6. Spark基础入门(01)—RDD

    1,基本概念 RDD(Resilient Distributed Dataset) :弹性分布式数据集 它是Spark中最基本的数据抽象,是编写Spark程序的基础.简单的来讲,一个Spark程序可以 ...

  7. 【Spark基础】:RDD

    我的代码实践:https://github.com/wwcom614/Spark 1.RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式 ...

  8. spark基础知识

    1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架. dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopM ...

  9. 最全的spark基础知识解答

    原文:http://www.36dsj.com/archives/61155 一. Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduc ...

随机推荐

  1. Android清空Fragment回退栈

    啊= =:国内的资料为什么都是抄来抄去的. 最后上了Stack Overflow才找到了正解. FragmentManager fragmentManager = getFragmentManager ...

  2. C# 动态创建SQL数据库(二) 在.net core web项目中生成二维码 后台Post/Get 请求接口 方式 WebForm 页面ajax 请求后台页面 方法 实现输入框小数多 自动进位展示,编辑时实际值不变 快速掌握Gif动态图实现代码 C#处理和对接HTTP接口请求

    C# 动态创建SQL数据库(二) 使用Entity Framework  创建数据库与表 前面文章有说到使用SQL语句动态创建数据库与数据表,这次直接使用Entriy Framwork 的ORM对象关 ...

  3. Android用shareUserID实现多个Activity显示在同一界面

    近来整理文档,发现两年前研究Android多个Activity叠加显示的方案.时光荏苒,一去不回. 虽然后来没有用上,但还是整理如下,Android版本还是2.2的: ActivityGroup描画方 ...

  4. apache主机(网站)配置,port监听,文件夹訪问权限及分布式权限

    前言 一个网站的两个核心信息为: 主机名称(server名/网站名):ServerName server名 网站位置(网站文件夹路径):DocumentRoot "实际物理路径" ...

  5. eclipse引入的第三方jar包放到同一个目录下

    相信大家对这个不陌生吧: 使用eclipse,在JAVA项目中导入第三方jar包,然后看到一长串引入jar包信息,如下图: 看着不美观,也不是非常有必要,能不能像图中JRE System Librar ...

  6. Android利用Fiddler进行网络数据抓包【怎么跟踪微信请求】

    主要介绍Android及IPhone手机上如何利用Fiddler进行网络数据抓包,比如我们想抓某个应用(微博.微信.墨迹天气)的网络通信请求就可以利用这个方法. Mac 下请使用 Charles 代替 ...

  7. JavaScript之正則表達式入门

    <html> <head><title>Js String 正則表達式</title><script>//边界符 js 中直接定义须要边界符 ...

  8. [na]小区网络-pppoe拨号认证原理及部署(panabit来管理)

    以前搞网络时候,对小区宽带adsl上网(后ie中的pppoe拨号config)+对一坨人限速的系统(panabit)比较感兴趣,挺神秘. 以前写的,有些纰漏,抽时间我会陆陆续续补充下. PPPOE认证 ...

  9. [na]非对称加密方式&带加密的数字签名交互流程

    1,对称加密 2,混合加密 3.数字签名 4,带加密的数字签名

  10. [na]mail收发过程

    以前老记不住这smtp和pop3谁收谁发. 简单邮件传输协议(SMTP),用来发送或中转发出的电子邮件,       占用tcp 25端口. 第三版邮局协议(POP3),用于将服务器上把邮件存储到本地 ...