CF932E Team Work——第二类斯特林数
n太大,而k比较小,可以O(k^2)做
想方设法争取把有关n的循环变成O(1)的式子
考虑用公式:
来替换i^k
原始的组合数C(n,i)一项,考虑能否和后面的系数分离开来,直接变成2^n处理。
之后大力推式子
考虑要消掉n,就想办法把n往里面放,与和n有关的项外层枚举的话,相对就不动了。可以乘法分配律把n搞定。
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=;
const int mod=1e9+;
int s[N][N];
int C[N][N];
ll qm(ll x,ll y){
ll ret=;
while(y){
if(y&) ret=ret*x%mod;
x=x*x%mod;
y>>=;
}
return ret;
}
ll n,k;
int main(){
scanf("%lld %lld",&n,&k);
if(n>k){
s[][]=;
for(reg i=;i<=k;++i){
for(reg j=;j<=k;++j){
s[i][j]=((ll)s[i-][j-]+(ll)j*s[i-][j]%mod)%mod;
}
}
ll jie=;
ll ans=;
for(reg j=;j<=k;++j){
jie=jie*(n-j+)%mod;
ll mi=qm(,n-j);
ans=(ans+(ll)s[k][j]*jie%mod*mi%mod)%mod;
}
printf("%lld",ans);
}else{
C[][]=;
for(reg i=;i<=n;++i){
C[i][]=;
for(reg j=;j<=n;++j){
C[i][j]=((ll)C[i-][j]+C[i-][j-])%mod;
}
}
ll ans=;
for(reg i=;i<=n;++i){
ans=(ans+(ll)C[n][i]*qm(i,k))%mod;
}
printf("%lld",ans);
}
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/12/28 19:46:50
*/
推式子其实是下策(下下策是打表找规律。。。)
如果有组合意义的话,那么效果是立竿见影的。
意义是,n个盒子,从中选择i个出来,再把k个球往这i个盒子里放,可以不放的方案数总和。盒子不同球不同
k很小,没用的盒子很多,
转化研究对象,
考虑k个球最终占据了哪几个盒子。其他的盒子打酱油爱选不选。
那么直接就是:
一步搞定!
CF932E Team Work——第二类斯特林数的更多相关文章
- CF932E Team Work(第二类斯特林数)
题目 CF932E Team Work 前置:斯特林数\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ &\sum\limits_{i=1}^n C_ ...
- Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )
题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...
- 【CF932E】Team Work(第二类斯特林数)
[CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...
- CF932E Team Work(第二类斯特林数)
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...
- 【cf932E】E. Team Work(第二类斯特林数)
传送门 题意: 求\(\displaystyle \sum_{i=0}^n{n\choose i}i^k,n\leq 10^9,k\leq 5000\). 思路: 将\(i^k\)用第二类斯特林数展开 ...
- Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
随机推荐
- 准备正式开始学习C++,先发点牢骚
由于职业关系,经常使用AutoCAD之类绘图软件,但这些软件平台的功能,对专业的应用细节来说,并不能全都照顾到,需要一些二次开发,提升一些个性化操作的效率.软件本身也大多提供了开发软件包,AutoCA ...
- 怎样安装Scrapy
Windows怎样安装Scrapy? pip install scrapy会报错 访问https://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted 下载并放到 ...
- manjaro i3下 dmenu terminal 和 terminal_hold 打开方式记录
分别用type为terminal 和 terminal_hold 打开eclipse 用terminal_hold打开,终端和界面分左右显示 用terminal打开,终端和界面分上下显示 除了排列方式 ...
- mysql数据导到本地
需求: 把mysql查询结果导出到txt(其他格式亦可),放在本地,供下一步使用 首先网上查了下,select * from driver into outfile 'a.txt'; 前面是你的sql ...
- 我想这次我真的理解了 JavaScript 的单线程机制
今天面试的时候被问到一个问题,是关于 JS 异步的.当时我脑海中闪过了一个单线程的概念,但却没有把真正的原理阐述清楚.所以回来特意重新回顾了前面单线程和异步相关的一些知识点. 虽然之前学习的时候也接触 ...
- 获取label标签内for的属性值-js
<body> <div class="row_2" id="ass"> <label for="aaa"> ...
- Visual Studio 调试时无法命中断点
1.查看代码优化是否勾选,如有去掉勾选 2.确保是在Debug模式下设置的断点 3.确保在启动时未修改代码即“要求源文件和原始版本完全匹配” 4.DLL的引用问题
- Java 学习笔记 ------第一章 Java平台概论
本章学习目标: Java版本迁移简介 认识Java SE.Java EE.Java ME 认识JDK规范与操作 了解JVM.JRE与JDK 下载与安装JDK 一.Java版本迁移简介 书上已经表达得非 ...
- 四则运算(Android)版
实验题目: 将小学四则运算整合成网页版或者是Android版.实现有无余数,减法有无负数.... 设计思路: 由于学到的基础知识不足,只能设计简单的加减乘除,界面设计简单,代码量少,只是达到了入门级的 ...
- 404 Note Found -选题报告
目录 NABCD分析引用 N(Need,需求): A(Approach,做法): B(Benefit,好处): C(Competitors,竞争): D(Delivery,交付): 初期 中期 个人贡 ...