使用 DL4J 训练中文词向量
使用 DL4J 训练中文词向量
1 预处理
对中文语料的预处理,主要包括:分词、去停用词以及一些根据实际场景制定的规则。
package ai.mole.test;
import org.ansj.domain.Term;
import org.ansj.splitWord.analysis.ToAnalysis;
import org.nlpcn.commons.lang.tire.domain.Forest;
import org.nlpcn.commons.lang.tire.library.Library;
import java.io.*;
import java.util.LinkedList;
import java.util.List;
import java.util.regex.Pattern;
public class Preprocess {
private static final Pattern NUMERIC_PATTERN = Pattern.compile("^[.\\d]+$");
private static final Pattern ENGLISH_WORD_PATTERN = Pattern.compile("^[a-z]+$");
public static void main(String[] args) {
String inPath1 = "D:\\MyData\\XUGP3\\Desktop\\测试分词\\test1.txt";
String inPath2 = "D:\\MyData\\XUGP3\\Desktop\\测试分词\\stop_words.txt";
String outPath = "D:\\MyData\\XUGP3\\Desktop\\测试分词\\result1.txt";
String encoding = "utf-8";
PrintWriter writer = null;
Forest forest = null;
try {
writer = new PrintWriter(new OutputStreamWriter(new FileOutputStream(outPath), encoding));
forest = Library.makeForest(Test.class.getResourceAsStream("/library/userLibrary.dic"));
List<String> lineList = IOUtil.readLines(new FileInputStream(inPath1), encoding);
List<String> stopWordList = IOUtil.readLines(new FileInputStream(inPath2), encoding);
for (String line : lineList) {
String[] cols = line.split("\\t", -1);
if (cols.length < 2) {
continue;
}
String text = cols[0].trim().toLowerCase() + " " + cols[1].trim().toLowerCase();
// 分词
List<Term> termList = ToAnalysis.parse(text, forest).getTerms();
List<String> wordList = new LinkedList<>();
for (Term term : termList) {
String word = term.getName();
if (word.length() < 2) {
continue;
}
if (stopWordList.contains(word)) {
continue;
}
if (isNumeric(word)) {
continue;
}
if (isEnglishWord(word)) {
continue;
}
wordList.add(word);
}
if (wordList.size() > 5) {
String outStr = listToLine(wordList);
writer.println(outStr);
}
}
} catch (FileNotFoundException e) {
System.out.println("The file does not exist or the path is not correct!!!");
System.exit(-1);
} catch (UnsupportedEncodingException e) {
System.out.println("Does not support the current character set!!!");
} catch (IOException e) {
e.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
} finally {
if (writer != null) {
writer.close();
}
}
}
private static boolean isNumeric(String text) {
return NUMERIC_PATTERN.matcher(text).matches();
}
private static boolean isEnglishWord(String text) {
return ENGLISH_WORD_PATTERN.matcher(text).matches();
}
private static String listToLine(List<String> list) {
StringBuilder sb = new StringBuilder();
for (int i=0; i<list.size(); i++) {
sb.append(list.get(i));
if (i != list.size()-1) {
sb.append(" ");
}
}
return sb.toString();
}
}
2 训练
训练的代码非常简单,可以直接看官网的教程,至于 word2vec 的原理可以看皮提果的博文。
package ai.mole.test;
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer;
import org.deeplearning4j.models.word2vec.Word2Vec;
import org.deeplearning4j.text.sentenceiterator.BasicLineIterator;
import org.deeplearning4j.text.sentenceiterator.SentenceIterator;
import org.deeplearning4j.text.tokenization.tokenizerfactory.DefaultTokenizerFactory;
import org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.File;
import java.io.IOException;
import java.util.Collection;
public class TrainWord2VecModel {
private static Logger log = LoggerFactory.getLogger(TrainWord2VecModel.class);
public static void main(String[] args) throws IOException {
String corpusPath = "/data/analyze/xgp/words.txt";
String vectorsPath = "/data/analyze/xgp/word_vectors.txt";
log.info("Start Training...");
long st = System.currentTimeMillis();
log.info("Load & vectorize sentences...");
SentenceIterator iter = new BasicLineIterator(new File(corpusPath));
TokenizerFactory t = new DefaultTokenizerFactory();
// t.setTokenPreProcessor(new CommonPreprocessor());
log.info("Building model...");
Word2Vec vec = new Word2Vec.Builder()
.minWordFrequency(50)
.iterations(1)
.epochs(100)
.layerSize(500)
.seed(42)
.windowSize(5)
.iterate(iter)
.tokenizerFactory(t)
.build();
log.info("Fitting word2vec model...");
vec.fit();
log.info("Writing word vectors to text file...");
// WordVectorSerializer.writeWord2VecModel(vec, vectorsPath);
WordVectorSerializer.writeWordVectors(vec, vectorsPath);
log.info("Closest words:");
Collection<String> bydWordList = vec.wordsNearest("比亚迪", 10);
Collection<String> changanWordList = vec.wordsNearest("长安", 10);
System.out.print(bydWordList);
System.out.println(changanWordList);
log.info("10 words closest to '比亚迪': {}", bydWordList);
log.info("10 words closest to '长安': {}", changanWordList);
long et = System.currentTimeMillis();
log.info("Training is completed, and the time taken is " + (et-st) + " ms.");
System.out.println("Training is completed, and the time taken is " + (et-st) + " ms.");
}
}
3 调用
调用训练好的词向量也非常简单,只需要调用 WordVectorSerializer 类的静态方法 readWord2VecModel 就可以了,提供的输入参数就是训练好的词向量路径。
Word2Vec word2Vec = WordVectorSerializer.readWord2VecModel("D:\\MyData\\XUGP3\\Desktop\\测试分词\\vectors.txt");
Collection<String> bydWordList = word2Vec.wordsNearest("比亚迪", 10);
Collection<String> changanWordList = word2Vec.wordsNearest("长安", 10);
System.out.println(bydWordList);
System.out.println(changanWordList);
附录 - maven 依赖
<dependencies>
<dependency>
<groupId>org.apdplat</groupId>
<artifactId>word</artifactId>
<version>1.3</version>
</dependency>
<!-- ND4J backend. You need one in every DL4J project. Normally define artifactId as either "nd4j-native-platform" or "nd4j-cuda-7.5-platform" -->
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>${nd4j.backend}</artifactId>
<version>${nd4j.version}</version>
</dependency>
<!-- Core DL4J functionality -->
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-core</artifactId>
<version>${dl4j.version}</version>
</dependency>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-nlp</artifactId>
<version>${dl4j.version}</version>
</dependency>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-zoo</artifactId>
<version>${dl4j.version}</version>
</dependency>
<!-- deeplearning4j-ui is used for visualization: see http://deeplearning4j.org/visualization -->
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-ui_${scala.binary.version}</artifactId>
<version>${dl4j.version}</version>
</dependency>
<!-- ParallelWrapper & ParallelInference live here -->
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-parallel-wrapper_${scala.binary.version}</artifactId>
<version>${dl4j.version}</version>
</dependency>
<!-- Next 2: used for MapFileConversion Example. Note you need *both* together -->
<dependency>
<groupId>org.datavec</groupId>
<artifactId>datavec-hadoop</artifactId>
<version>${datavec.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
</dependency>
<!-- Arbiter - used for hyperparameter optimization (grid/random search) -->
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>arbiter-deeplearning4j</artifactId>
<version>${arbiter.version}</version>
</dependency>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>arbiter-ui_2.11</artifactId>
<version>${arbiter.version}</version>
</dependency>
<!-- datavec-data-codec: used only in video example for loading video data -->
<dependency>
<artifactId>datavec-data-codec</artifactId>
<groupId>org.datavec</groupId>
<version>${datavec.version}</version>
</dependency>
</dependencies>
使用 DL4J 训练中文词向量的更多相关文章
- 使用word2vec训练中文词向量
https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词 ...
- AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法
AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法 2018-01-18 16:13蚂蚁金服/雾霾/人工智能 导读:词向量算法是自然语言处理领域的基础算法,在序列标注.问答系统和机 ...
- 文本分布式表示(三):用gensim训练word2vec词向量
今天参考网上的博客,用gensim训练了word2vec词向量.训练的语料是著名科幻小说<三体>,这部小说我一直没有看,所以这次拿来折腾一下. <三体>这本小说里有不少人名和一 ...
- 在Keras模型中one-hot编码,Embedding层,使用预训练的词向量/处理图片
最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的 ...
- word2vec 构建中文词向量
词向量作为文本的基本结构——词的模型,以其优越的性能,受到自然语言处理领域研究人员的青睐.良好的词向量可以达到语义相近的词在词向量空间里聚集在一起,这对后续的文本分类,文本聚类等等操作提供了便利,本文 ...
- 开源共享一个训练好的中文词向量(语料是维基百科的内容,大概1G多一点)
使用gensim的word2vec训练了一个词向量. 语料是1G多的维基百科,感觉词向量的质量还不错,共享出来,希望对大家有用. 下载地址是: http://pan.baidu.com/s/1boPm ...
- 文本分布式表示(二):用tensorflow和word2vec训练词向量
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/pegho ...
- word2vec词向量训练及中文文本类似度计算
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python ...
- NLP教程(2) | GloVe及词向量的训练与评估
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-det ...
随机推荐
- osgi.net框架
osgi.net是一个动态的模块化框架.它向用户提供了模块化与插件化.面向服务构架和模块扩展支持等功能.该平台是OSGi联盟定义的服务平台规范移植到.NET的实现. 简介 尤埃开放服务平台是一个基于. ...
- PostgreSQL递归查询
原料 --创建组织架构表 create table "Org"( "OrgId" ) primary key, "ParentId" ), ...
- ASP.NET 生成缩略图片类分享
/// <summary> /// 生成图片缩略图 指定文件路径生成 /// </summary> public static void SaveImage(String fu ...
- 日笔记--C# 从数据库取表格到DataGridView---json传输
只作为个人学习笔记. class OpData { // 创建一个和客户端通信的套接字 Socket socketwatch = null; //连接Access字符串 string strCon; ...
- SQL server 添加主外键约束
---添加主键约束 alter table 表名 add constraint 约束名 primary key (主键) - --添加唯一约束 alter table 表名 ...
- Let it crash philosophy part II
Designing fault tolerant systems is extremely difficult. You can try to anticipate and reason about ...
- sqlmap注入之tamper绕过WAF脚本列表
本文作者:i春秋作者——玫瑰 QQ2230353371转载请保留文章出处 使用方法--tamper xxx.py apostrophemask.py用UTF-8全角字符替换单引号字符 apostrop ...
- maven指定本地的文件包
maven指定本地的文件包 案例: <!-- CKFinder begin --> <dependency> <groupId>net.coobird</gr ...
- 挂载U盘到linux中
一. 挂载U盘到linux中,也可以是虚拟机中的linux 1. 首先插上U盘 2. fdisk -l 找到自己的U盘设备,并且记住文件系统类型,主要看空间大小来判断,比如是/dev/sdc ...
- 通过设置Ionic-Cli代理解决ionic serve跨域调试问题
Ionic-Cli代理设置: 打开ionic.config.json文件,添加proxies代理配置字段: { "name": "ion", "app ...