BZOJ3436: 小K的农场(差分约束裸题&DFS优化判环)
3436: 小K的农场
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 2111 Solved: 986
[Submit][Status][Discuss]
Description
Input
Output
如果存在某种情况与小K的记忆吻合,输出”Yes”,否则输出”No”
Sample Input
3 1 2
1 1 3 1
2 2 3 2
Sample Output
样例解释
三个农场种植的数量可以为(2,2,1)
HINT
Source
(注意判定条件是>N,不是大于等于。
用dis表示不等式,然后跑最短路或者最长路即可。 9520ms
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn],To[maxn],Len[maxn];
int cnt,vis[maxn],num[maxn],dis[maxn],N;
void add(int u,int v,int w){
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; Len[cnt]=w;
}
bool SPFA()
{
queue<int>q;
memset(dis,-,sizeof(dis));
dis[]=; q.push(); vis[]=; num[]++;
while(!q.empty()){
int u=q.front(); q.pop(); vis[u]=;
for(int i=Laxt[u];i;i=Next[i]){ int v=To[i];
if(dis[v]<dis[u]+Len[i]){
dis[v]=dis[u]+Len[i];
if((++num[v])>N) return false;
if(!vis[v]) vis[v]=,q.push(v);
}
}
}
return true;
}
int main()
{
int M,opt,a,b,c;
scanf("%d%d",&N,&M);
rep(i,,N) add(,i,);
rep(i,,M){
scanf("%d",&opt);
if(opt==) {
scanf("%d%d%d",&a,&b,&c);
add(b,a,c);
}
else if(opt==) {
scanf("%d%d%d",&a,&b,&c);
add(a,b,-c);
}
else {
scanf("%d%d",&a,&b);
add(a,b,); add(b,a,);
}
}
if(SPFA()) puts("Yes");
else puts("No");
return ;
}
然后优化了一下,把次数改为前者+1,而不是自加1。4452ms。 但是注意一下,CF1131D里这样是错的。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn<<],To[maxn<<],Len[maxn<<];
int cnt,vis[maxn],num[maxn],dis[maxn],N;
void add(int u,int v,int w){
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; Len[cnt]=w;
}
bool SPFA()
{
queue<int>q;
memset(dis,-,sizeof(dis));
dis[]=; q.push(); vis[]=; num[]++;
while(!q.empty()){
int u=q.front(); q.pop(); vis[u]=;
for(int i=Laxt[u];i;i=Next[i]){ int v=To[i];
if(dis[v]<dis[u]+Len[i]){
dis[v]=dis[u]+Len[i];
num[v]=num[u]+;
if(num[v]>N) return false;
if(!vis[v]) vis[v]=,q.push(v);
}
}
}
return true;
}
int main()
{
int M,opt,a,b,c;
scanf("%d%d",&N,&M);
rep(i,,N) add(,i,);
rep(i,,M){
scanf("%d",&opt);
if(opt==) {
scanf("%d%d%d",&a,&b,&c);
add(b,a,c);
}
else if(opt==) {
scanf("%d%d%d",&a,&b,&c);
add(a,b,-c);
}
else {
scanf("%d%d",&a,&b);
add(a,b,); add(b,a,);
}
}
if(SPFA()) puts("Yes");
else puts("No");
return ;
}
把queue改为stack,然后就124ms了,估计不是因为queue比stack快,而是数据使然。
(据说是改为stck变为深搜DFS了!)
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn<<],To[maxn<<],Len[maxn<<];
int cnt,vis[maxn],num[maxn],dis[maxn],N;
void add(int u,int v,int w){
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; Len[cnt]=w;
}
bool SPFA()
{
stack<int>q;
memset(dis,-,sizeof(dis));
dis[]=; q.push(); vis[]=; num[]++;
while(!q.empty()){
int u=q.top(); q.pop(); vis[u]=;
for(int i=Laxt[u];i;i=Next[i]){ int v=To[i];
if(dis[v]<dis[u]+Len[i]){
dis[v]=dis[u]+Len[i];
num[v]=num[u]+;
if(num[v]>N) return false;
if(!vis[v]) vis[v]=,q.push(v);
}
}
}
return true;
}
int main()
{
int M,opt,a,b,c;
scanf("%d%d",&N,&M);
rep(i,,N) add(,i,);
rep(i,,M){
scanf("%d",&opt);
if(opt==) {
scanf("%d%d%d",&a,&b,&c);
add(b,a,c);
}
else if(opt==) {
scanf("%d%d%d",&a,&b,&c);
add(a,b,-c);
}
else {
scanf("%d%d",&a,&b);
add(a,b,); add(b,a,);
}
}
if(SPFA()) puts("Yes");
else puts("No");
return ;
}
BZOJ3436: 小K的农场(差分约束裸题&DFS优化判环)的更多相关文章
- 【BZOJ3436】小K的农场 差分约束
[BZOJ3436]小K的农场 Description 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了, ...
- P1993 小K的农场 && 差分约束
首先第一篇讨论的是差分约束系统解的存在 差分约束系统是有 \(n\) 个变量及 \(m\) 个(如 \(x_{i} - x_{j} \leq a_{k}\) )关系组成的系统 差分约束解的求解可以转化 ...
- BZOJ 3436: 小K的农场 差分约束
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=3436 题解: 裸的差分约束: 1.a>=b+c -> b<=a-c ...
- 小K的农场 差分约束
题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了c个单位的作 ...
- [bzoj3436]小K的农场_差分约束
小K的农场 bzoj-3436 题目大意:给定n个点,每个节点有一个未知权值.现在有m个限制条件,形如:点i比点j至少大c,点i比点j至多大c或点i和点j相等.问是否可以通过给所有点赋值满足所有限制条 ...
- bzoj3436小K的农场
bzoj3436小K的农场 题意: n个数,知道m条关系:a-b≥c.a-b≤c或a==b.问是否存在满足所有关系的情况.n≤10000,m≤10000. 题解: 差分约束.因为只要求是否满足,因此最 ...
- bzoj3436: 小K的农场(差分约束)
3436: 小K的农场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1575 Solved: 690[Submit][Status][Discus ...
- bzoj3436: 小K的农场(差分约束)
3436: 小K的农场 题目:传送门 题解: 查分基础: t==1 a>=b+c t==2 b>=a-c t==3 a>=b+0 b>=a+0 跑最长路一A 代码: #i ...
- BZOJ3436 小K的农场
Description 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得 一些含糊的信息(共m个 ...
随机推荐
- HTML5开发——轻量级JSON存储解决方案Lawnchair.js
Lawnchair是一个轻量级的移动应用程序数据持久化存储方案,同时也是客户端JSON文档存储方法,优点是短小,语法简洁,扩展性比较好. 现在做HTML5移动应用除了LocalStorage的兼容性比 ...
- malloc calloc realloc 区别
(1)C语言跟内存分配方式 <1>从静态存储区域分配. 内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在.例如全局变量.static变量.<2> ...
- CCPC-Wannafly Winter Camp Day2 (Div2, onsite)
Class $A_i = a \cdot i \% n$ 有 $A_i = k \cdot gcd(a, n)$ 证明: $A_0 = 0, A_x = x \cdot a - y \cdot n$ ...
- 20155203 2016-2017-4 《Java程序设计》第8周学习总结
20155203 2016-2017-4 <Java程序设计>第8周学习总结 教材学习内容总结 1.channel的继承架构 2.position()类似于堆栈操作中的栈顶指针. 3.Pa ...
- Java实现二叉查找树
摘要:一个二叉查找树的Java实现.可以学习二叉树处理的递归及非递归技巧. 难度:初级. 为了克服对树结构编程的恐惧感,决心自己实现一遍二叉查找树,以便掌握关于树结构编程的一些技巧和方法.以下是基本思 ...
- ansible之template模块
趁着最近在搞ansible,现在学习了一波template模块的用法: 1.使用template模块在jinja2中引用变量,先来目录结构树 [root@master ansible]# tree . ...
- 真实机下 ubuntu 18.04 安装GPU +CUDA+cuDNN 以及其版本选择(亲测非常实用)【转】
本文转载自:https://blog.csdn.net/u010801439/article/details/80483036 ubuntu 18.04 安装GPU +CUDA+cuDNN : 目前, ...
- ubuntu16.04解决tensorflow提示未编译使用SSE3、SSE4.1、SSE4.2、AVX、AVX2、FMA的问题【转】
本文转载自:https://blog.csdn.net/Nicholas_Wong/article/details/70215127 rticle/details/70215127 在我的机器上出现的 ...
- linux kernel 提示VFS: Cannot open root device "mmcblk0p1" or unknown-block(179,1): error -19等信息后发生panic
一.背景 文件系统安装在sd卡的第一个分区中,使用的是ext4文件系统,linux内核版本为4.14 二.思考 在内核启动之前,uboot给内核传递了参数root=/dev/mmcblk0p1,但是为 ...
- Vim提示E325(锁机制)
背景 用vim命令处理一些超大文件时,有时会遇到卡死现象,不得不强制退出.但是,再次用vim命令访问这个文件时,会出现“E325:ATTENTION”提示.如果不做处理,以后每次都会出现. 分析 经过 ...