paper url: https://arxiv.org/abs/1811.08883

当在数据量足够和训练iterations足够的情况下,ImageNet pretrain不会对最后的性能有帮助,但是会加速收敛(需要用GN或SyncBN);
当数据量不够的情况下, 模型是需要在 ImageNet 上预训练的

  1. training from scratch 是可行的, 但是需要合适的 normalization(如GN)和更多的迭代。
  2. 根据数据量等情况,training from scratch 可以不比 fine-tune 的效果差。
  3. fine-tune 的方式还是收敛速度快很多。
  4. 除非, 目标数据集规模很小, fine-tune 是没有办法减少过拟合的; fine-tune 时候, 需要让大的 lr迭代次数更多,如果小的lr迭代次数过多的话,很容易过拟合。
  5. 对于位置敏感的任务,在分类任务上预训练的模型进行 fine-tune 的效果会变小; 比如需要对目标精确定位的任务,在 ImageNet 上预训练的模型上 fine-tune 没效果,比如 keypoint 的任务。

rethinking imageNet pre-training的更多相关文章

  1. 对Rethinking ImageNet Pre-training的理解

    Kaiming He的这篇论文提出了一个新问题,在目标检测.实例分割和人体关键点检测等领域,预训练的模型是否真的起了作用?通过实验,得出结论:迭代次数较少时,使用预训练模型效果更好:但是只要迭代次数充 ...

  2. ICCV 2019|70 篇论文抢先读,含目标检测/自动驾驶/GCN/等(提供PDF下载)

    虽然ICCV2019已经公布了接收ID名单,但是具体的论文都还没放出来,为了让大家更快得看论文,我们汇总了目前已经公布的大部分ICCV2019 论文,并组织了ICCV2019论文汇总开源项目(http ...

  3. 转:谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版

    [转:http://blog.csdn.net/buaalei/article/details/46344675] 大家好!我是贾扬清,目前在Google Brain,今天有幸受雷鸣师兄邀请来和大家聊 ...

  4. 贾扬清分享_深度学习框架caffe

    Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...

  5. 『计算机视觉』物体检测之RefineDet系列

    Two Stage 的精度优势 二阶段的分类:二步法的第一步在分类时,正负样本是极不平衡的,导致分类器训练比较困难,这也是一步法效果不如二步法的原因之一,也是focal loss的motivation ...

  6. Batch_Size对网络训练结果的影响

    最近在跑一些网络时发现,训练完的网络在测试集上的效果总是会受Batch_Size 大小的影响.这种现象跟以往自己所想象的有些出入,于是出于好奇,各种搜博客,大致得出了自己想要的答案,现写一篇博客记录一 ...

  7. 『计算机视觉』Mask-RCNN_项目文档翻译

    基础介绍 项目地址:Mask_RCNN 语言框架:Python 3, Keras, and TensorFlow Python 3.4, TensorFlow 1.3, Keras 2.0.8 其他依 ...

  8. 谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版

    谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版 一.讲座正文: 大家好!我是贾扬清237,目前在Google Brain83,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe60.没有太多准备, ...

  9. Google大脑科学家贾杨清(Caffe缔造者)-微信讲座

    Google大脑科学家贾杨清(Caffe缔造者)-微信讲座 机器学习Caffe 贾扬清 caffe   一.讲座正文: 大家好!我是贾扬清178,目前在Google Brain69,今天有幸受雷鸣师兄 ...

随机推荐

  1. .a 文件 和 so 文件

           所谓静态链接是指把要调用的函数或者过程链接到可执行文件中,成为可执行文件的一部分.当多个程序都调用相同函数时,内存中就会存在这个函数的多个拷贝,这样就浪费了宝贵的内存资源..so文件是共 ...

  2. (light oj 1319) Monkey Tradition 中国剩余定理(CRT)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1319 In 'MonkeyLand', there is a traditional ...

  3. 菜鸟学python之程序初体验

    作业来源:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2684 1.字符串操作: 解析身份证号:生日.性别.出生地等. def id ...

  4. Make a Person 闭包

    用下面给定的方法构造一个对象. 方法有 getFirstName(), getLastName(), getFullName(), setFirstName(first), setLastName(l ...

  5. path node

    process.cwd() 当前Node.js进程执行时的工作目录 __dirname 当前模块的目录名 const path = require('path'); console.log(__dir ...

  6. jQuery的deferred对象实战应用(附:Exchar动态多条数据展示并在topic展示详细数据)

    解决三个后台请求都成功后先比较数据再处理数据的需求 今天碰到了一个问题,我需要创建一个图表,但是需要请求三个接口才能比较出指标数据,于是就看到了deferred对象 理论的补充在这里:http://w ...

  7. linux下JNI开发—Hello为例

    转自:https://www.cnblogs.com/snake-hand/archive/2012/05/25/2517412.html 前期准备: 1.Java JDK 2.gcc 3.g++ 确 ...

  8. Analysis Services features supported by SQL Server editions

    Analysis Services (servers) Feature Enterprise Standard Web Express with Advanced Services Express w ...

  9. [ffmpeg] h.264解码所用的主要缓冲区介绍

    在进行h264解码过程中,有两个最重要的结构体,分别为H264Picture.H264SliceContext. H264Picture H264Picture用于维护一帧图像以及与该图像相关的语法元 ...

  10. [HNOI2007]神奇游乐园(插头DP)

    题意:n*m的矩阵内值有正有负,找一个四连通的简单环(长度>=4),使得环上值的和最大. 题解:看到2<=m<=6和简单环,很容易想到插头DP,设f[i][j][k]表示轮廓线为第i ...