目标:从一个数据库中提取几个集合中的部分数据,组合起来一共一万条。几个集合,不足一千条数据的集合就全部提取,够一千条的就用一万减去不足一千的,再除以大于一千的集合个数,得到的值即为所需提取文档的个数。从每个集合中提取的数据存放到新的对应集合中,新集合名称为原先集合加"_col"。

用到相关技术点:

操作MONGODB:

先通过IP和端口号连接到MONGODB所在的机器,得到一个MONGODB客户端对象,然后认证某个数据库的账号密码连接到该数据库,得到一个该数据库的对象。一个数据库下有很多集合(相当于SQL中的表),集合里数据存储格式是BSON(同JSON)格式,集合中有很多条文档(相当于SQL中的记录)。可以通过数据库对象得到一个集合的对象,通过集合的对象来进行数据库增删改查的操作。

MONGODB操作的函数:

创建数据库:mydb = myclient["runoobdb"]

查看该客户端的所有数据库:dblist = myclient.list_database_names()

判断数据库是否存在:if "runoobdb" in dblist: print("数据库已存在!")

创建集合:mycol = mydb["sites"]

查看该数据库的所有集合:collist = mydb. list_collection_names()

判断集合是否存在:if "sites" in collist:  print("集合已存在!")

插入一个文档:

  mydict = { "name": "RUNOOB", "alexa": "10000", "url": "https://www.runoob.com" }

  x = mycol.insert_one(mydict)

  print(x)

  输出结果:<pymongo.results.InsertOneResult object at 0x10a34b288>

  insert_one() 方法返回 InsertOneResult 对象,该对象包含 inserted_id 属性,它是插入文档的 id 值。print(x.inserted_id)。如果我们在插入文档时没有指定 _id,MongoDB 会为每个文档添加一个唯一的 id

插入多个文档:

  mylist = [ { "name": "Taobao", "alexa": "100", "url": "https://www.taobao.com" }, { "name": "QQ", "alexa": "101", "url": "https://www.qq.com" }, { "name": "Facebook", "alexa": "10", "url": "https://www.facebook.com" }, { "name": "知乎", "alexa": "103", "url": "https://www.zhihu.com" }, { "name": "Github", "alexa": "109", "url": "https://www.github.com" } ]

  x = mycol.insert_many(mylist)

  # 输出插入的所有文档对应的 _id 值

  print(x.inserted_ids)

插入查询结果文档集:

  x.insert_many(mycol.find())

查询一条数据:

  x = mycol.find_one() print(x)

查询集合中所有数据:

  for x in mycol.find():

    print(x)

查询指定字段:

  for x in mycol.find({},{ "_id": 0, "name": 1, "alexa": 1 }):  ##0表示该字段不出现,1表示该字段出现。除了_id字段,其他字段数字要一致,即要么都为0要么都为1。

    print(x)

条件查询:

  等值查询:

    myquery = { "name": "RUNOOB" }

    mydoc = mycol.find(myquery)

    for x in mydoc:

      print(x)

  非等值查询:   

    # (>) 大于 - $gt
    # (<) 小于 - $lt
    # (>=) 大于等于 - $gte
    # (<= ) 小于等于 - $lte
    #例:查询集合中age大于25的所有记录
    for i in my_col.find({"age":{"$gt":25}}):
      print(i)

正则表达式查询:

  ## 读取 name 字段中第一个字母为 "R" 的数据

  yquery = { "name": { "$regex": "^R" } }

  mydoc = mycol.find(myquery)

  for x in mydoc:

    print(x)

查询指定条数记录:

  ## 返回 3 条文档记录

  myresult = mycol.find().limit(3)

  # 输出结果

  for x in myresult:

    print(x)

查询结果集中第n条记录,及第n条记录某个字段的值:

  ## 查询按照alexa字段倒排后,第三条记录的alexa字段的值

  condition = col.find().sort("alexa",-1)[3]["alexa"]

  print(condition)

查询一个集合中总文档个数:

  num_document = mycol.count_documents({})
  print(num_document)

按照字段类型条件查找:

  #找出name的类型是String的
  for i in my_set.find({'name':{'$type':2}}):
    print(i)

  ‘’‘类型对照列表'''

  Double 1

  String 2
  Object 3
  Array 4
  Binary data 5
  Undefined 6 已废弃
  Object id 7
  Boolean 8
  Date 9
  Null 10
  Regular Expression 11
  JavaScript 13
  Symbol 14
  JavaScript (with scope) 15
  32-bit integer 16
  Timestamp 17
  64-bit integer 18
  Min key 255 Query with -1.
  Max key 127

limit和skip:

  #limit()方法用来读取指定数量的数据
  #skip()方法用来跳过指定数量的数据
  #下面表示跳过两条数据后读取6条
  for i in my_set.find().skip(2).limit(6):
    print(i)

IN:

  #找出age是20、30、35的数据
  for i in my_set.find({"age":{"$in":(20,30,35)}}):
    print(i)

OR:

  #找出age是20或35的记录
  for i in my_set.find({"$or":[{"age":20},{"age":35}]}):
    print(i)

多级路径元素查找:

  ## 先插入一条数据 

  dic = {"name":"zhangsan",
    "age":18,
    "contact" : {
      "email" : "1234567@qq.com",
      "iphone" : "11223344"}
    }
  my_set.insert(dic)

  #多级目录用. 连接

  for i in my_set.find({"contact.iphone":"11223344"}):
    print(i)
  #输出:{'name': 'zhangsan', '_id': ObjectId('58c4f99c4fc9d42e0022c3b6'), 'age': 18, 'contact': {'email': '1234567@qq.com', 'iphone': '11223344'}}

排序:

  ## sort() 方法第一个参数为要排序的字段,第二个字段指定排序规则,1 为升序,-1 为降序,默认为升序。

  ## 对字段 alexa 按降序排序

  mydoc = mycol.find().sort("alexa",-1)

  for x in mydoc:

    print(x)

删除一个文档:

  ## delete_one() 方法来删除一个文档,该方法第一个参数为查询对象,指定要删除哪些数据。

  ## 删除 name 字段值为 "Taobao" 的文档

  myquery = { "name": "Taobao" }

  mycol.delete_one(myquery)

  # 删除后输出

  for x in mycol.find():

    print(x)

删除多个文档:

  myquery = { "name": {"$regex": "^F"} }

  x = mycol.delete_many(myquery)

  print(x.deleted_count, "个文档已删除")

删除集合中所有文档:

   ## delete_many() 方法如果传入的是一个空的查询对象,则会删除集合中的所有文档

  x = mycol.delete_many({})

  print(x.deleted_count, "个文档已删除")

删除集合:

  mycol = mydb["sites"]

  mycol.drop()  ## 如果删除成功 drop() 返回 true,如果删除失败(集合不存在)则返回 false

修改一条记录:

  ## update_one() 方法修改文档中的记录。该方法第一个参数为查询的条件,第二个参数为要修改的字段。如果查找到的匹配数据多余一条,则只会修改第一条。

  myquery = { "alexa": "10000" }

  newvalues = { "$set": { "alexa": "12345" } }

  mycol.update_one(myquery, newvalues)

  # 输出修改后的 "sites" 集合

  for x in mycol.find():

    print(x)

修改多条记录:

  ## 将查找所有以 F 开头的 name 字段,并将匹配到所有记录的 alexa 字段修改为 123

  myquery = { "name": { "$regex": "^F" } }

  newvalues = { "$set": { "alexa": "123" } }
  x = mycol.update_many(myquery, newvalues)
  print(x.modified_count, "文档已修改")

config.py

## 数据库URL
MONGO_URL = 'mongodb://123.456.789.123:27017/'
## 数据库名称
MONGO_DB = 'hellodb' mongodb_extract.py
#导入存储MONGODB数据库的配置信息
from config import *
import pymongo ## 定义一个mongodb客户端
client = pymongo.MongoClient(MONGO_URL)
## 连接数据库,账号密码认证
db = client[MONGO_DB]
db.authenticate("username", "password")
'''问题:此函数得到的平均数,可能有的集合文档数目达不到。或者说可以按照每个集合比例数目提取数据'''
def average_num():
'''返回一个不大于1000个文档的集合,所需提取文档的个数列表。使得所要提取的几个集合所有提取文档个数为10000。'''
## 所有不大于1000的集合中的文档个数之和
count = 0
## 不大于1000的集合个数
i = 0
## 大于1000的集合所需提取文档的个数的列表
extract_num = []
for collection in db.list_collection_names():
if "_col" not in collection:
col = db[collection]
num_document = col.count_documents({})
print(num_document)
if num_document <= 1000:
count += num_document
else:
i += 1
## (10000-所有<1000的集合的文档之和)/大于1000的集合个数,取整数
average = int((10000 - count) / i)
## (10000-所有<1000的集合的文档之和)% 大于1000的集合个数,求余
remainder = (10000 - count) % i
for j in range(i-1):
extract_num.append(average)
extract_num.append(average + remainder)
return extract_num
def extract_data():
'''取出所有数据'''
extract_num_list = average_num()
for collection in db.list_collection_names():
## 几个集合的名称,每个类一个集合
col = db[collection]
## 每个集合的文档个数
num_document = col.count_documents({})
if num_document <= 1000:
## 如果一个集合中文档数量不超过1000,全部提取存储
db[collection + "_col"].insert_many(col.find({},{"infoId":0,"update_author":0,"Customs":0,"Customs_branch":0}))
else:
## 如果集合文档大于1000,则提取根据日期排序最新的指定个数文档
## 指定数量文档为止的约束日期
condition = col.find().sort("report_time",-1)[extract_num_list.pop()]["report_time"]
## 将大于约束日期的数据提取并存储
db[collection + "_col"].insert_many(col.find({"report_time":{"$gte":condition}},{"infoId":0,"update_author":0,"Customs":0,"Customs_branch":0}))
def main():
extract_data()
if __name__ == '__main__':
main()
write_data.py
'''将提取后的数据集合分别写到对应的.json文件中'''
#导入存储MONGODB数据库的配置信息
from config import *
import pymongo
import json ## 定义一个mongodb客户端
client = pymongo.MongoClient(MONGO_URL)
## 连接数据库,账号密码认证
db = client[MONGO_DB]
db.authenticate("username", "password") for collection in db.list_collection_names():
if "_col" in collection:
col = db[collection]
with open(collection[:-4] + '.json', 'a', encoding='utf-8') as f:  ## a表示文件可追加,编码utf-8防止中文乱码
for data in col.find():
          #f.write(str(data) + '\n') ## str()写可以写入文件,但是写到文件中的每条数据不是json格式,而是字符串格式,json.dumps()写入的是json格式文件,也只有json格式文件才可用MONGODB客户端导入数据库。
                f.write(json.dumps(data,ensure_ascii=False) + '\n')  ## json.dumps()得到的数据默认是ascii编码,这里ensure_ascii=False不让它编码为ascii格式。
        f.close()
参考:http://www.runoob.com/python3/python-mongodb.html
   https://www.cnblogs.com/melonjiang/p/6536876.html
 

python操作MONGODB数据库,提取部分数据再存储的更多相关文章

  1. python操作三大主流数据库(10)python操作mongodb数据库④mongodb新闻项目实战

    python操作mongodb数据库④mongodb新闻项目实战 参考文档:http://flask-mongoengine.readthedocs.io/en/latest/ 目录: [root@n ...

  2. python操作三大主流数据库(9)python操作mongodb数据库③mongodb odm模型mongoengine的使用

    python操作mongodb数据库③mongodb odm模型mongoengine的使用 文档:http://mongoengine-odm.readthedocs.io/guide/ 安装pip ...

  3. python操作三大主流数据库(8)python操作mongodb数据库②python使用pymongo操作mongodb的增删改查

    python操作mongodb数据库②python使用pymongo操作mongodb的增删改查 文档http://api.mongodb.com/python/current/api/index.h ...

  4. python操作三大主流数据库(7)python操作mongodb数据库①mongodb的安装和简单使用

    python操作mongodb数据库①mongodb的安装和简单使用 参考文档:中文版:http://www.mongoing.com/docs/crud.html英文版:https://docs.m ...

  5. python操作mongodb根据_id查询数据的实现方法

    python操作mongodb根据_id查询数据的实现方法   python操作mongodb根据_id查询数据的实现方法,实例分析了Python根据pymongo不同版本操作ObjectId的技巧, ...

  6. Python 操作 mongodb 数据库

    原文地址:https://serholiu.com/python-mongodb 这几天在学习Python Web开发,于 是做准备做一个博客来练练手,当然,只是练手的,博客界有WordPress这样 ...

  7. python 操作mongoDB数据库

    网上关于python 操作mongoDB的相关文章相对不是很多,并且质量也不是很高!下面给出一个完整的 增删改查示例程序! #!/usr/bin/python # -*- coding: utf-8 ...

  8. python操作mongodb数据库

    一.MongoDB 数据库操作 连接数据库 import pymongo conn = pymongo.Connection() # 连接本机数据库 conn = pymongo.Connection ...

  9. 【转】Python操作MongoDB数据库

    前言 MongoDB GUI 工具 PyMongo(同步) Motor(异步) 后记 前言 最近这几天准备介绍一下 Python 与三大数据库的使用,这是第一篇,首先来介绍 MongoDB 吧,,走起 ...

随机推荐

  1. SQL Server分页存储过程通用存储过程

    CREATE proc [dbo].[p_paging]@tableName varchar(8000),          --表名.视图名@indexCol varchar(50) = 'id', ...

  2. "每日一道面试题".net托管堆是否会存在内存泄漏的情况

    首先说答案:会 所谓的内存泄漏,就是指内存空间上产生了不再被实际使用却又无非被分配的对象.严格意义上来说,在.net中经常会遇到内存泄漏的情况,因为托管堆内的对象不再被使用时,需要等待下一次GC才会被 ...

  3. [争什么! 掺在一起做撒尿牛丸啊! 笨蛋]ASP.NET Core 2.0 + EF6 + Linux +MySql混搭

    好消息!特好消息!同时使用ASP.NET Core 2.0和.NET Framework类库还能运行在linux上的方法来啦! 是的,你没有看错!ASP.NET Core 2.0,.NET Frame ...

  4. PHP数组array_multisort排序详解

    今天特意再看了下官网的介绍,对它的多个数组的排序还是每台理解,找了些资料深入理解了下,在此总结下. PHP中array_multisort函数对多个数组或多维数组进行排序,关联(string)键名保持 ...

  5. Form提交表单后页面刷新不跳转的实现

    <form action="" id="" method="post" target="nm_iframe"> ...

  6. noi.ac #289. 电梯(单调队列)

    题意 题目链接 Sol 傻叉的我以为给出的\(t\)是单调递增的,然后\(100\rightarrow0\) 首先可以按\(t\)排序,那么转移方程为 \(f[i] = min_{j=0}^{i-1} ...

  7. 手机Soc芯片简介

    手机SoC(System On a Chip,在一个芯片里面集成CPU.GPU.SP.ISP.RAM内存.Wi-Fi控制器.基带芯片以及音频芯片等)芯片(基于arm架构指令集) 高通骁龙(Snapdr ...

  8. linux 网络套接字

    在内核分析网络分组时,底层协议的数据将传输到跟高的层.而发送数据的时候顺序是相反的.每一层都是通过加(首部+净荷)传向跟底层,直至最终发送. 这些操作决定了网络的的性能. 就如下图所示 linux因此 ...

  9. keepalived+nginx负载均衡+ApacheWeb实现高可用

    1.Keepalived高可用软件 Keepalived软件起初是专为LVS负载均衡软件设计的,用来管理并监控LVS集群系统中各个服务节点的状态,后来又加入了可以实现高可用的VRRP功能.因此,kee ...

  10. LeetCode算法题-Construct String from Binary Tree(Java实现)

    这是悦乐书的第273次更新,第288篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第141题(顺位题号是606).构造一个字符串,该字符串由二叉树中的括号和整数组成,并具 ...