题目链接

题目描述

给定一个非负整数序列{a},初始长度为N。

有M个操作,有以下两种操作类型:

A x:添加操作,表示在序列末尾添加一个数x,序列的长度N+1。

Q l r x:询问操作,你需要找到一个位置p,满足l≤p≤r,使得: a[p]⊕a[p+1]⊕...⊕a[N]⊕x 最大,输出最大是多少。

输入输出格式

输入格式:

第一行包含两个整数N,M,含义如问题描述所示。
第二行包含 N个非负整数,表示初始的序列A 。
接下来 M行,每行描述一个操作,格式如题面所述。

输出格式:

假设询问操作有 T 个,则输出应该有 T 行,每行一个整数表示询问的答案。

输入输出样例

输入样例#1:

5  5
2 6 4 3 6
A 1
Q 3 5 4
A 4
Q 5 7 0
Q 3 6 6
输出样例#1:

4
5
6
关于这道题思路就不再多说,主要讲一下细节问题。
 #include<iostream>
#include<string>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<map>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector>
#define maxn 600005
using namespace std; inline int read()
{
int x=,res=;
char c=getchar();
while(c<''||c>'')
{
if(c=='-')
x=-;
c=getchar();
}
while(c>=''&&c<='')
{
res=res*+(c-'');
c=getchar();
}
return res*x;
} int n,m,tot,aa;
int last[maxn*],root[maxn],s[maxn];
int tree[maxn*][]; void trie(int i,int k,int l,int r)
{
if(k<)
{
last[r]=i;
return;
}
int c=(s[i]>>k)&;
if(l) tree[r][c^]=tree[l][c^];
tree[r][c]=++tot;
trie(i,k-,tree[l][c],tree[r][c]);
last[r]=max(last[tree[r][]],last[tree[r][]]);
} int ask(int now,int val,int k,int l)
{
if(k<) return val^s[last[now]];
int c=val>>k&;
if(last[tree[now][c^]]>=l)/*如果以这个点为根的子树上的结点的最大编号
大于等于l,那么这个结点就有意义,否则,这个结点就没有任何意义*/
{
return ask(tree[now][c^],val,k-,l);
}
else
{
return ask(tree[now][c],val,k-,l);
}
} int main()
{
n=read();m=read();
last[]=-;/*0号点其实就是trie树上不存在的点,之所以清为负数而不是
0,这是因为如果询问的区间的l是1,那么根据我们会把所有last的值>=0(l-1)
的数计算进去,这样如果不清为负数,那么trie树上没有的点我们也会错误的
计算进去,所以last一定要清为负数。
*/
root[]=++tot;/*这个根节点标记为1是为了和不在trie树上的点区分开 */
trie(,,,);//先构造一个全0的trie树
for(int i=;i<=n;i++)
{
aa=read();
s[i]=s[i-]^aa;
root[i]=++tot;
trie(i,,root[i-],root[i]);
}
for(int i=;i<=m;i++)
{
char c;
scanf("%s",&c);
if(c=='A')
{
aa=read();
root[++n]=++tot;
s[n]=s[n-]^aa;
trie(n,,root[n-],root[n]);
}
else
{
int l,r,x;
l=read();r=read();x=read();
printf("%d\n",ask(root[r-],s[n]^x,,l-));
}
}
}

P4735 最大异或和的更多相关文章

  1. 洛谷 P4735 最大异或和 解题报告

    P4735 最大异或和 题目描述 给定一个非负整数序列\(\{a\}\),初始长度为\(N\). 有\(M\)个操作,有以下两种操作类型: A x:添加操作,表示在序列末尾添加一个数\(x\),序列的 ...

  2. luogu P4735 最大异或和

    嘟嘟嘟 省选竟然考了一个可持久化trie,就挑着我不会的考. 话说考场上我确实写了一个trie的做法,只不过一直没调出来然后就只剩暴力分了. 现在想想实在是太蠢了,明明对算法没有把握,却头脑一热在这题 ...

  3. Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)

    题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦 ...

  4. 【题解】洛谷P4735最大异或和

    学习了一下可持久化trie的有关姿势~其实还挺好理解的,代码也短小精悍.重点在于查询某个历史版本的trie树上的某条边是否存在,同样我们转化到维护前缀和来实现.同可持久化线段树一样,我们为了节省空间继 ...

  5. 可持久化+Trie || BZOJ 3261最大异或和 || Luogu P4735 最大异或和

    题面:最大异或和 代码: #include<cstdio> #include<cstring> #include<iostream> using namespace ...

  6. P4735 最大异或和 01 Trie

    题目描述 给定一个非负整数序列 \(\{a\}\),初始长度为\(n\). 有 \(m\) 个操作,有以下两种操作类型: \(A\ x\):添加操作,表示在序列末尾添加一个数 \(x\),序列的长度 ...

  7. [洛谷P4735]最大异或和

    题目大意:有一串初始长度为$n$的序列$a$,有两种操作: $A\;x:$在序列末尾加一个数$x$ $Q\;l\;r\;x:$找一个位置$p$,满足$l\leqslant p\leqslant r$, ...

  8. P4735 最大异或和 /【模板】可持久化Trie

    //tire的可持久化 //线段树的可持久化——主席树 //可持久化的前提:本身的拓扑结构在操作时不变 //可以存下来数据结构的所有历史版本 //核心思想:只记录每一个版本与前一个版本不一样的地方 / ...

  9. Trie树入门

    Trie树入门 貌似很多人会认为\(Trie\)是字符串类型,但是这是数据结构!!!. 详情见度娘 下面开始进入正题. PS:本文章所有代码未经编译,有错误还请大家指出. 引入 先来看一个问题 ​ 给 ...

随机推荐

  1. JAVA关键字及作用

    ---恢复内容开始--- Java关键字及其作用 一. 总览: 访问控制 private protected public 类,方法和变量修饰符 abstract class extends fina ...

  2. appium框架之bootstrap

    (闲来无事,做做测试..)最近弄了弄appium,感觉挺有意思,就深入研究了下. 看小弟这篇文章之前,先了解一下appium的架构,对你理解有好处,推荐下面这篇文章:testerhome appium ...

  3. Redisson 分布式锁

    Redisson_百度百科https://baike.baidu.com/item/Redisson/20856570 redission 分布式锁 - 穆穆兔兔 - 博客园https://www.c ...

  4. Laravel 框架结构 以及目录文件解读(学习笔记)

    composer下载Laravel 5.4(由于PHP版本仅7.0,故未下载5.6) composer create-project laravel/laravel your-project-name ...

  5. Ubuntu 16.04安装MySQL(5.7.18)

    此篇为http://www.cnblogs.com/EasonJim/p/7139275.html的分支页. 安装MySQL前需要做如下了解: 1.MySQL各类型版本的区别,参考:http://ww ...

  6. Python Installing Jupyter

    Jupyter说明jupyter notebook是一款网页版的Python编辑器组件,便于学习Python Jupyer安装yum -y install gcc gcc-c++ kernel-dev ...

  7. badboy安装及使用

    badboy下载 下载地址:http://www.badboy.com.au/download/index 直接点击[continue] badboy安装 badboy录制 默认是录制状态 访问sog ...

  8. java jdbc ResultSet结果通过java反射赋值给java对象

    在不整合框架的情况下,使用jdbc从数据库读取数据时都得一个个的get和set,不仅累代码还显得不简洁,所以利用java的反射机制写了一个工具类,这样用jdbc从数据库拿数据的时候就不用那么麻烦了. ...

  9. vue实战记录(二)- vue实现购物车功能之创建vue实例

    vue实战,一步步实现vue购物车功能的过程记录,课程与素材来自慕课网,自己搭建了express本地服务器来请求数据 作者:狐狸家的鱼 本文链接:vue实战-实现购物车功能(二) GitHub:sue ...

  10. macOS修改Dock隐藏速度

    延迟时间 修改延迟时间改为0,默认为1. defaults write com.apple.dock autohide-delay -int 0; killall Dock 修改为浮点数值,例如0.1 ...