原文:C#高性能大容量SOCKET并发(十一):编写上传客户端

客户端封装整体框架

客户端编程基于阻塞同步模式,只有数据正常发送或接收才返回,如果发生错误则抛出异常,基于TcpClient进行封装,主要类结构如下图:

TcpClient:NET系统封装,实现了底层Socket操作,提供了阻塞和非阻塞调用;

OutgoingDataAssembler m_outgoingDataAssembler:协议组装器,用来组装往外发送的命令,主要用于组装协议格式;

DynamicBufferManager m_sendBuffer:用于把命令和数据同时写入到缓存中,调用一次发送,这样服务器就只会产生一次IOCP回调,可以提高性能;

IncomingDataParser m_incomingDataParser:收到数据的解析器,用于解析返回的内容,主要是解析文本格式;

protected DynamicBufferManager m_recvBuffer:接收数据的缓存,数据存到缓存中后,可以解析命令和数据;

TcpClient说明,阻塞和非阻塞

TcpClient封装了NET的底层Socket操作,基于TCP协议,提供了阻塞和非阻塞模式调用,具体是设置m_tcpClient.Client.Blocking = true表示使用阻塞模式,反之则使用非阻塞模式。阻塞模式表示接收完指定长度的数据才返回,非阻塞模式表示收到一点数据就返回。

如我们调用m_tcpClient.Client.Receive(m_recvBuffer.Buffer, sizeof(int), packetLength, SocketFlags.None),假设传入的长度为1024,阻塞模式一点要等到数据达到1024长度才返回,否则一直等待Socket超时或者链路断了,非阻塞模式则不同,加入收到8字节了,则返回调用者,调用者使用循环继续接受1024-8=1016的数据。

发送命令

发送数据和服务端相同,主要是对数据进行组包,然后调用发送函数发送,具体代码如下:

        public void SendCommand(byte[] buffer, int offset, int count)
{
string commandText = m_outgoingDataAssembler.GetProtocolText();
byte[] bufferUTF8 = Encoding.UTF8.GetBytes(commandText);
int totalLength = sizeof(int) + bufferUTF8.Length + count; //获取总大小
m_sendBuffer.Clear();
m_sendBuffer.WriteInt(totalLength, false); //写入总大小
m_sendBuffer.WriteInt(bufferUTF8.Length, false); //写入命令大小
m_sendBuffer.WriteBuffer(bufferUTF8); //写入命令内容
m_sendBuffer.WriteBuffer(buffer, offset, count); //写入二进制数据
m_tcpClient.Client.Send(m_sendBuffer.Buffer, 0, m_sendBuffer.DataCount, SocketFlags.None);
}

接收命令

接收命令和发送相反,先接收长度,然后接收内容,然后对数据进行解包,具体代码如下:

        public bool RecvCommand(out byte[] buffer, out int offset, out int size)
{
m_recvBuffer.Clear();
m_tcpClient.Client.Receive(m_recvBuffer.Buffer, sizeof(int), SocketFlags.None);
int packetLength = BitConverter.ToInt32(m_recvBuffer.Buffer, 0); //获取包长度
if (NetByteOrder)
packetLength = System.Net.IPAddress.NetworkToHostOrder(packetLength); //把网络字节顺序转为本地字节顺序
m_recvBuffer.SetBufferSize(sizeof(int) + packetLength); //保证接收有足够的空间
m_tcpClient.Client.Receive(m_recvBuffer.Buffer, sizeof(int), packetLength, SocketFlags.None);
int commandLen = BitConverter.ToInt32(m_recvBuffer.Buffer, sizeof(int)); //取出命令长度
string tmpStr = Encoding.UTF8.GetString(m_recvBuffer.Buffer, sizeof(int) + sizeof(int), commandLen);
if (!m_incomingDataParser.DecodeProtocolText(tmpStr)) //解析命令
{
buffer = null;
offset = 0;
size = 0;
return false;
}
else
{
buffer = m_recvBuffer.Buffer;
offset = commandLen + sizeof(int) + sizeof(int);
size = packetLength - offset;
return true;
}
}

命令交互

封装了底层Socket操作和协议解析后,实现一个命令交互如登录代码如下:

        public bool DoLogin(string userName, string password)
{
try
{
m_outgoingDataAssembler.Clear();
m_outgoingDataAssembler.AddRequest();
m_outgoingDataAssembler.AddCommand(AsyncSocketServer.ProtocolKey.Login);
m_outgoingDataAssembler.AddValue(AsyncSocketServer.ProtocolKey.UserName, userName);
m_outgoingDataAssembler.AddValue(AsyncSocketServer.ProtocolKey.Password, AsyncSocketServer.BasicFunc.MD5String(password));
SendCommand();
bool bSuccess = RecvCommand();
if (bSuccess)
{
bSuccess = CheckErrorCode();
if (bSuccess)
{
m_userName = userName;
m_password = password;
}
return bSuccess;
}
else
return false;
}
catch (Exception E)
{
//记录日志
m_errorString = E.Message;
return false;
}
}

上传协议

上传协议主要分为三个命令,第一个是Upload,向服务器请求上传的文件,如果服务器有相同的文件,则返回是否传完,如果未传完,返回需要续传的文件位置,然后客户端则从上一个位置开始传输,传输数据服务器只接收,不应答,客户端传输完后,发完成(EOF)命令。因此三个命令封装代码如下:

        public bool DoUpload(string dirName, string fileName, ref long fileSize)
{
bool bConnect = ReConnectAndLogin(); //检测连接是否还在,如果断开则重连并登录
if (!bConnect)
return bConnect;
try
{
m_outgoingDataAssembler.Clear();
m_outgoingDataAssembler.AddRequest();
m_outgoingDataAssembler.AddCommand(AsyncSocketServer.ProtocolKey.Upload);
m_outgoingDataAssembler.AddValue(AsyncSocketServer.ProtocolKey.DirName, dirName);
m_outgoingDataAssembler.AddValue(AsyncSocketServer.ProtocolKey.FileName, fileName);
SendCommand();
bool bSuccess = RecvCommand();
if (bSuccess)
{
bSuccess = CheckErrorCode();
if (bSuccess)
{
bSuccess = m_incomingDataParser.GetValue(AsyncSocketServer.ProtocolKey.FileSize, ref fileSize);
}
return bSuccess;
}
else
return false;
}
catch (Exception E)
{
//记录日志
m_errorString = E.Message;
return false;
}
} public bool DoData(byte[] buffer, int offset, int count)
{
try
{
m_outgoingDataAssembler.Clear();
m_outgoingDataAssembler.AddRequest();
m_outgoingDataAssembler.AddCommand(AsyncSocketServer.ProtocolKey.Data);
SendCommand(buffer, offset, count);
return true;
}
catch (Exception E)
{
//记录日志
m_errorString = E.Message;
return false;
}
} public bool DoEof(Int64 fileSize)
{
try
{
m_outgoingDataAssembler.Clear();
m_outgoingDataAssembler.AddRequest();
m_outgoingDataAssembler.AddCommand(AsyncSocketServer.ProtocolKey.Eof);
SendCommand();
bool bSuccess = RecvCommand();
if (bSuccess)
return CheckErrorCode();
else
return false;
}
catch (Exception E)
{
//记录日志
m_errorString = E.Message;
return false;
}
}

调用过程:

        protected static bool SendFile(string fileName, ClientUploadSocket uploadSocket)
{
FileStream fileStream = new FileStream(fileName, FileMode.Open, FileAccess.ReadWrite);
try
{
try
{
long fileSize = 0;
if (!uploadSocket.DoUpload("", Path.GetFileName(fileName), ref fileSize))
throw new Exception(uploadSocket.ErrorString);
fileStream.Position = fileSize;
byte[] readBuffer = new byte[PacketSize];
while (fileStream.Position < fileStream.Length)
{
int count = fileStream.Read(readBuffer, 0, PacketSize);
if (!uploadSocket.DoData(readBuffer, 0, count))
throw new Exception(uploadSocket.ErrorString);
}
if (!uploadSocket.DoEof(fileStream.Length))
throw new Exception(uploadSocket.ErrorString);
return true;
}
catch (Exception E)
{
Console.WriteLine("Upload File Error: " + E.Message);
return false;
}
}
finally
{
fileStream.Close();
}
}

DEMO下载地址:http://download.csdn.net/detail/sqldebug_fan/7467745

免责声明:此代码只是为了演示C#完成端口编程,仅用于学习和研究,切勿用于商业用途。水平有限,C#也属于初学,错误在所难免,欢迎指正和指导。邮箱地址:fansheng_hx@163.com。

C#高性能大容量SOCKET并发(十一):编写上传客户端的更多相关文章

  1. C#高性能大容量SOCKET并发(转)

    C#高性能大容量SOCKET并发(零):代码结构说明 C#高性能大容量SOCKET并发(一):IOCP完成端口例子介绍 C#高性能大容量SOCKET并发(二):SocketAsyncEventArgs ...

  2. C#高性能大容量SOCKET并发(四):缓存设计

    原文:C#高性能大容量SOCKET并发(四):缓存设计 在编写服务端大并发的应用程序,需要非常注意缓存设计,缓存的设计是一个折衷的结果,需要通过并发测试反复验证.有很多服务程序是在启动时申请足够的内存 ...

  3. C#高性能大容量SOCKET并发(零):代码结构说明

    原文:C#高性能大容量SOCKET并发(零):代码结构说明 C#版完成端口具有以下特点: 连接在线管理(提供在线连接维护,连接会话管理,数据接收,连接断开等相关事件跟踪): 发送数据智能合并(组件会根 ...

  4. C#高性能大容量SOCKET并发(九):断点续传

    原文:C#高性能大容量SOCKET并发(九):断点续传 上传断点续传 断点续传主要是用在上传或下载文件,一般做法是开始上传的时候,服务器返回上次已经上传的大小,如果上传完成,则返回-1:下载开始的时候 ...

  5. C#高性能大容量SOCKET并发(七):协议字符集

    原文:C#高性能大容量SOCKET并发(七):协议字符集 UTF-8 UTF-8是UNICODE的一种变长字符编码又称万国码,由Ken Thompson于1992年创建.现在已经标准化为RFC 362 ...

  6. C#高性能大容量SOCKET并发(五):粘包、分包、解包

    原文:C#高性能大容量SOCKET并发(五):粘包.分包.解包 粘包 使用TCP长连接就会引入粘包的问题,粘包是指发送方发送的若干包数据到接收方接收时粘成一包,从接收缓冲区看,后一包数据的头紧接着前一 ...

  7. C#高性能大容量SOCKET并发(三):接收、发送

    原文:C#高性能大容量SOCKET并发(三):接收.发送 异步数据接收有可能收到的数据不是一个完整包,或者接收到的数据超过一个包的大小,因此我们需要把接收的数据进行缓存.异步发送我们也需要把每个发送的 ...

  8. C#高性能大容量SOCKET并发(二):SocketAsyncEventArgs封装

    原文:C#高性能大容量SOCKET并发(二):SocketAsyncEventArgs封装 1.SocketAsyncEventArgs介绍 SocketAsyncEventArgs是微软提供的高性能 ...

  9. C#高性能大容量SOCKET并发(十):SocketAsyncEventArgs线程模型

    原文:C#高性能大容量SOCKET并发(十):SocketAsyncEventArgs线程模型 线程模型 SocketAsyncEventArgs编程模式不支持设置同时工作线程个数,使用的NET的IO ...

随机推荐

  1. thinkphp5开发规范(加强复习之前的)

    thinkphp5开发规范(加强复习之前的) 一.总结 一句话总结:和类相关的采用驼峰命名法:变量,函数,类,方法,属性采用驼峰命名发:数据库及文件及配置参数是小写字母加下划:常量大写加下划线 1.T ...

  2. SecondaryNameNode 的作用

    Secondary NameNode:它究竟有什么作用? 尽量不要将 secondarynamede 和 namenode 放在同一台机器上. 1. NameNode NameNode 主要是用来保存 ...

  3. Windows安装Jekyll

    Run Jekyll on Windows 夹 Jekyll介绍 安装Ruby 安装DevKit 安装Jekyll 安装Python 安装pip 执行Jekyll Introduction Jekyl ...

  4. 【19.05%】【codeforces 731F】 Video Cards

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  5. dzone Cloud Zone

    dzone Cloud Zonehttps://dzone.com/cloud-computing-tutorials-tools-news有一些统计:https://dzone.com/refcar ...

  6. 如何只安装dependencies

    npm install --production 这样就会跳过devDependencies配置 参考链接 https://docs.npmjs.com/cli/install (如果想安装devDe ...

  7. Android 光标位置设置

    EditText edit =(EditText) findViewById(R.id.etTest); 1.设置光标在EditText中的指定位置 edit.setSelection(1); 需要注 ...

  8. node lesson3

    var express = require('express'); var superagent = require('superagent'); var cheerio = require('che ...

  9. 关于提高UDP发送效率的方法

    UDP的发送效率和什么因素有关呢? 直观觉得,UDP的切包长越大,应该发送效率越高(最长为65536).可是依据实际測试和在网上查到的资料的结果,包长度为1024为发送效率最高. 这样的结果让人感到疑 ...

  10. 微服务实践之路--RPC

    微服务实践之路--RPC 重点来了,本文全面阐述一下我们的RPC是怎么实现并如何使用的,跟Kubernetes和Openstack怎么结合. 在选型一文中说到我们选定的RPC框架是Apache Thr ...