caffe(7) solver及其配置
solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为
# caffe train --solver=*_slover.prototxt
在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。
到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。
- Stochastic Gradient Descent (
type: "SGD"), - AdaDelta (
type: "AdaDelta"), - Adaptive Gradient (
type: "AdaGrad"), - Adam (
type: "Adam"), - Nesterov’s Accelerated Gradient (
type: "Nesterov") and - RMSprop (
type: "RMSProp")
具体的每种方法的介绍,请看本系列的下一篇文章, 本文着重介绍solver配置文件的编写。
Solver的流程:
1. 设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)
2. 通过forward和backward迭代的进行优化来跟新参数。
3. 定期的评价测试网络。 (可设定多少次训练后,进行一次测试)
4. 在优化过程中显示模型和solver的状态
在每一次的迭代过程中,solver做了这几步工作:
1、调用forward算法来计算最终的输出值,以及对应的loss
2、调用backward算法来计算每层的梯度
3、根据选用的slover方法,利用梯度进行参数更新
4、记录并保存每次迭代的学习率、快照,以及对应的状态。
接下来,我们先来看一个实例:
net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU
接下来,我们对每一行进行详细解译:
net: "examples/mnist/lenet_train_test.prototxt"
设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考本系列文文章中的(2)-(5)。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。
也可用train_net和test_net来对训练模型和测试模型分别设定。例如:
train_net: "examples/hdf5_classification/logreg_auto_train.prototxt"
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"
接下来第二行:
test_iter: 100
这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch
test_interval: 500
测试间隔。也就是每训练500次,才进行一次测试。
base_lr: 0.01
lr_policy: "inv"
gamma: 0.0001
power: 0.75
这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。
lr_policy可以设置为下面这些值,相应的学习率的计算为:
- - fixed: 保持base_lr不变.
- - step: 如果设置为step,则还需要设置一个stepsize, 返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
- - exp: 返回base_lr * gamma ^ iter, iter为当前迭代次数
- - inv: 如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
- - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据stepvalue值变化
- - poly: 学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
- - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
multistep示例:
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500
接下来的参数:
momentum :0.9
上一次梯度更新的权重,具体可参看下一篇文章。
type: SGD
优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。
weight_decay: 0.0005
权重衰减项,防止过拟合的一个参数。
display: 100
每训练100次,在屏幕上显示一次。如果设置为0,则不显示。
max_iter: 20000
最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。
还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。
也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO
solver_mode: CPU
设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。
注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此不一一列举。
caffe(7) solver及其配置的更多相关文章
- 【深度学习】之Caffe的solver文件配置(转载自csdn)
原文: http://blog.csdn.net/czp0322/article/details/52161759 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是mode ...
- 【转】Caffe的solver文件配置
http://blog.csdn.net/czp0322/article/details/52161759 solver.prototxt 今天在做FCN实验的时候,发现solver.prototxt ...
- Caffe学习系列(7):solver及其配置
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...
- [转]caffe中solver.prototxt参数说明
https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是so ...
- solver及其配置
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...
- 【caffe-Windows】微软官方caffe之matlab接口配置,以及安装caffe的注意事项
1.在此之前,记录一下之前的错误,在参考博客[caffe-Windows]caffe+VS2013+Windows+GPU配置+cifar使用进行caffe的安装时,其中的一些步骤可以不做,具体见下图 ...
- Caffe的Solver参数设置
Caffe的solver参数设置 http://caffe.berkeleyvision.org/tutorial/solver.html solver是通过协调前向-反向传播的参数更新来控制参数优化 ...
- Caffe学习系列(8):solver及其配置
solver是caffe的核心. net: "examples/mnist/lenet_train_test.prototxt" test_iter: 100 test_inter ...
- 利用Caffe训练模型(solver、deploy、train_val)+python使用已训练模型
本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可 ...
随机推荐
- Linux就该这么学 20181005(第七章磁盘管理)
参考链接https://www.linuxprobe.com lsblk检测硬盘使用情况 RAID 技术把多块物理硬盘设备(至少两块)通过硬件或软件的方式串联在一起,组成一个大的卷组,并将数据依次写入 ...
- Calender
public static void main(String[] args) { // TODO 自动生成的方法存根 Calendar c = new GregorianCalendar(); c., ...
- (转载) 清理缓存 IPackageStatsObserver
清理缓存 IPackageStatsObserver 2016-04-10 13:40 2288人阅读 评论(0) 收藏 举报 分类: android(59) 版权声明:本文为博主原创文章,未经博 ...
- Linux下查看mysql错误日志
1.进入 mysql 安装目录 进入 data 目录(该目录存储的是数据库的数据) cd /usr/local/mysql ll 进入 mysql 目录 ,发现 文件后缀 .err,即是mysql ...
- HDU 1505 City Game【DP】
题意:是二维的1506,即在1506的基础上,再加一个for循环,即从第一行到最后一行再扫一遍--- 自己写的时候,输入的方法不对---发现输不出结果,后来看了别人的----@_@发现是将字母和空格当 ...
- 《Unix环境高级编程》读书笔记 第11章-线程
1. 引言 了解如何使用多个控制线程在单进程环境中执行多个任务. 不管在什么情况下,只要单个资源需要在多个用户键共享,就必须处理一致性问题. 2. 线程概念 典型的Unix进程可以看成只有一个控制线程 ...
- 路飞学城Python-Day14
转载:python之路-路飞学城-python-book [25.常用模块-logging模块详解] [26.常用模块-logging模块详解2] [27.常用模块-logging模块日志过滤和日志文 ...
- 利用fabric批量安装kvm虚拟机及其xp
公司一批PC机需要安装多个虚拟机跑任务,搞来搞去决定用centos7安装KVM来跑.于是先折腾了一下午,利用早先搭建好的cobbler给PC机安装OS.然后fabric批量部署. 环境:centos7 ...
- HDU-4296 Buildings 贪心 从相邻元素的相对位置开始考虑
题目链接:https://cn.vjudge.net/problem/HDU-4296 题意 有很多板子,每一个板子有重量(w)和承重(s)能力 现规定一块板子的PDV值为其上所有板子的重量和减去这个 ...
- BZOJ1567 [JSOI2008]Blue Mary的战役地图(二分+二维hash)
题意 问边长为n的两个正方形中最大的相等子正方形.(n<=50) 题解 用到了二维hash,感觉和一维的不太一样. 对于列行有两个不同的进制数然后也是通过类似前缀和的方法差分出一个矩形的hash ...