solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

 # caffe train --solver=*_slover.prototxt

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

  • Stochastic Gradient Descent (type: "SGD"),
  • AdaDelta (type: "AdaDelta"),
  • Adaptive Gradient (type: "AdaGrad"),
  • Adam (type: "Adam"),
  • Nesterov’s Accelerated Gradient (type: "Nesterov") and
  • RMSprop (type: "RMSProp")

具体的每种方法的介绍,请看本系列的下一篇文章, 本文着重介绍solver配置文件的编写。

Solver的流程:

1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

2.     通过forward和backward迭代的进行优化来跟新参数。

3.     定期的评价测试网络。 (可设定多少次训练后,进行一次测试)

4.     在优化过程中显示模型和solver的状态

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

接下来,我们先来看一个实例:

 net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU

接下来,我们对每一行进行详细解译:

net: "examples/mnist/lenet_train_test.prototxt"

设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考本系列文文章中的(2)-(5)。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。

也可用train_net和test_net来对训练模型和测试模型分别设定。例如:

train_net: "examples/hdf5_classification/logreg_auto_train.prototxt"
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"

接下来第二行:

test_iter: 100

这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch

test_interval: 500

测试间隔。也就是每训练500次,才进行一次测试。

base_lr: 0.01
lr_policy: "inv"
gamma: 0.0001
power: 0.75

这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。

lr_policy可以设置为下面这些值,相应的学习率的计算为:

    • - fixed:   保持base_lr不变.
    • - step:    如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
    • - exp:     返回base_lr * gamma ^ iter, iter为当前迭代次数
    • - inv:      如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
    • - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据stepvalue值变化
    • - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
    • - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))

multistep示例:

base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500

接下来的参数:

momentum :0.9

上一次梯度更新的权重,具体可参看下一篇文章。

type: SGD

优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。

weight_decay: 0.0005

权重衰减项,防止过拟合的一个参数。

display: 100

每训练100次,在屏幕上显示一次。如果设置为0,则不显示。

max_iter: 20000

最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。

snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"

快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。

还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。

也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO

solver_mode: CPU

设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此不一一列举。

caffe(7) solver及其配置的更多相关文章

  1. 【深度学习】之Caffe的solver文件配置(转载自csdn)

    原文: http://blog.csdn.net/czp0322/article/details/52161759 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是mode ...

  2. 【转】Caffe的solver文件配置

    http://blog.csdn.net/czp0322/article/details/52161759 solver.prototxt 今天在做FCN实验的时候,发现solver.prototxt ...

  3. Caffe学习系列(7):solver及其配置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...

  4. [转]caffe中solver.prototxt参数说明

    https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是so ...

  5. solver及其配置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...

  6. 【caffe-Windows】微软官方caffe之matlab接口配置,以及安装caffe的注意事项

    1.在此之前,记录一下之前的错误,在参考博客[caffe-Windows]caffe+VS2013+Windows+GPU配置+cifar使用进行caffe的安装时,其中的一些步骤可以不做,具体见下图 ...

  7. Caffe的Solver参数设置

    Caffe的solver参数设置 http://caffe.berkeleyvision.org/tutorial/solver.html solver是通过协调前向-反向传播的参数更新来控制参数优化 ...

  8. Caffe学习系列(8):solver及其配置

    solver是caffe的核心. net: "examples/mnist/lenet_train_test.prototxt" test_iter: 100 test_inter ...

  9. 利用Caffe训练模型(solver、deploy、train_val)+python使用已训练模型

    本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可 ...

随机推荐

  1. m_Orchestrate learning system---十一、thinkphp查看临时文件的好处是什么

    m_Orchestrate learning system---十一.thinkphp查看临时文件的好处是什么 一.总结 一句话总结:可以知道thinkphp的标签被smarty引擎翻译而来的php代 ...

  2. caffe中lenet_solver.prototxt配置文件注解

    caffe框架自带的例子mnist里有一个lenet_solver.prototxt文件,这个文件是具体的训练网络的引入文件,定义了CNN网络架构之外的一些基础参数,如总的迭代次数.测试间隔.基础学习 ...

  3. 磁盘阵列里lun

    lun的全称是logical unit number,也就是逻辑单元号.我们知道scsi总线上可挂接的设备数量是有限的,一般为6个或者15个,我们可以用target ID(也有称为scsi id的)来 ...

  4. Python一行代码获得IP地址

    比较靠谱的方法, 通过构造UDP包获得本机IP地址   python -c "import socket;print([(s.connect(('8.8.8.8', 53)), s.gets ...

  5. Django(part4)

    一个简单的form表单: #polls/templates/polls/detail.html<h1>{{ question.question_text }}</h1> {% ...

  6. QT笔记 -- (1) .ui文件

    刚开始写QT,designer用的不习惯,打开.ui文件看了一下,很容易读的xml文件,记录一下. 大体框架如下 <?xml version="1.0" encoding=& ...

  7. H5教程:移动页面性能优化

    随着移动互联网的发展,我们越发要关注移动页面的性能优化,今天跟大家谈谈这方面的事情. 首先,为什么要最移动页面进行优化? 纵观目前移动网络的现状,移动页面布局越来越复杂,效果越来越炫,直接导致了文件越 ...

  8. 安装lnmp前请先运行screen

    当通过putty或者SecureCRT安装lnmp时, 网络突然掉线或者不小心putty被关掉等等原因, 造成lnmp安装过程被中断怎么办? 其实防止这种现象很简单, 只要在安装lnmp前执行scre ...

  9. 模块 -logging

    模块 -logging 一:在控制台显示:默认 import logging logging.debug("debug") logging.info("debug&quo ...

  10. Object-C,对象和方法

    学习Object-C,买了2本书,其中1本是用C币买的,总体质量一般,比较基础. 另外一本是,疯狂-李阳写的,大部头,比较吓人,比较全一点. 对于面向对象,之前还是有个大概的理解,再多点基础的例子. ...