通过逐行扫描,计算得出直线与多边形相交点进行求解

原理图形如下所示:

相关函数:

     /// <summary>
/// 求点P到线段L距离
/// </summary>
/// <param name="p"></param>
/// <param name="l"></param>
/// <param name="return_p"></param>
/// <param name="is_calc_width"></param>
/// <returns></returns>
public double p2l_di(gP p, gL l, gPoint return_p, bool is_calc_width = false)
{
double b, s, a_side, b_side, c_side;
a_side = p2p_di(p.p, l.ps);
if (a_side < eps) return ;
b_side = p2p_di(p.p, l.pe);
if (b_side < eps) return ;
c_side = p2p_di(l.ps, l.pe);
if (b_side < eps) return a_side; //' 钝角或直角三角形
if (a_side * a_side >= b_side * b_side + c_side * c_side)
{
return_p = l.pe;
if (is_calc_width)
return b_side - p.width * 0.0005 - l.width * 0.0005;
else
return b_side;
} if (b_side * b_side >= a_side * a_side + c_side * c_side)
{
return_p = l.ps;
if (is_calc_width)
return a_side - p.width * 0.0005 - l.width * 0.0005;
else
return a_side;
} // 锐角三角形
return_p = p2l_toP(p.p, l);
b = (a_side + b_side + c_side) * 0.5;
s = Math.Sqrt(b * (b - a_side) * (b - b_side) * (b - c_side));
if (is_calc_width)
return s * / c_side - p.width * 0.0005 - l.width * 0.0005;
else
return s * / c_side;
}
 /// <summary>
/// 求点P到线L垂足P
/// </summary>
/// <param name="p"></param>
/// <param name="l"></param>
/// <returns></returns>
public gPoint p2l_toP(gPoint p, gL l)
{
gPoint tempP;
if (Math.Abs(l.ps.x - l.pe.x) < eps)//垂直
{
tempP.x = (l.ps.x + l.pe.x) * 0.5;
tempP.y = p.y;
}
else if (Math.Abs(l.ps.y - l.pe.y) < eps) //水平
{
tempP.x = p.x;
tempP.y = (l.ps.y + l.pe.y) * 0.5;
}
else
{
double k = (l.pe.y - l.ps.y) / (l.pe.x - l.ps.x);
tempP.x = (p.y - l.ps.y + k * l.ps.x + p.x * k) * (k + * k);
tempP.y = p.y - (tempP.x - p.x) / k;
}
return tempP;
}
  /// <summary>
/// 求线段与线段交点
/// </summary>
/// <param name="l1ps"></param>
/// <param name="l1pe"></param>
/// <param name="l2ps"></param>
/// <param name="l2pe"></param>
/// <param name="isIntersect"></param>
/// <returns></returns>
public gPoint l2l_Intersect(gPoint l1ps, gPoint l1pe, gPoint l2ps, gPoint l2pe, ref bool isIntersect)
{
gL L1 = new gL(l1ps, l1pe, );
gL L2 = new gL(l2ps, l2pe, );
gPoint tempP = new gPoint();
double ABC, ABD, CDA, CDB, T;
//面积符号相同则两点在线段同侧,不相交 (对点在线段上的情况,本例当作不相交处理)
ABC = (L1.ps.x - L2.ps.x) * (L1.pe.y - L2.ps.y) - (L1.ps.y - L2.ps.y) * (L1.pe.x - L2.ps.x);
ABD = (L1.ps.x - L2.pe.x) * (L1.pe.y - L2.pe.y) - (L1.ps.y - L2.pe.y) * (L1.pe.x - L2.pe.x);
CDA = (L2.ps.x - L1.ps.x) * (L2.pe.y - L1.ps.y) - (L2.ps.y - L1.ps.y) * (L2.pe.x - L1.ps.x); // 三角形cda 面积的2倍 // 注意: 这里有一个小优化.不需要再用公式计算面积,而是通过已知的三个面积加减得出.
CDB = CDA + ABC - ABD; // 三角形cdb 面积的2倍
isIntersect = (CDA * CDB <= ) && (ABC * ABD <= );
//计算交点
T = CDA / (ABD - ABC);
tempP.x = L1.ps.x + T * (L1.pe.x - L1.ps.x);
tempP.y = L1.ps.y + T * (L1.pe.y - L1.ps.y);
return tempP;
}

Genesis实现后图示:

相关链接:http://www.cnblogs.com/zjutlitao/p/4117223.html

Genesis 多边形闭轮廓填充算法的更多相关文章

  1. OpenCV探索之路(十一):轮廓查找和多边形包围轮廓

    Canny一类的边缘检测算法可以根据像素之间的差异,检测出轮廓边界的像素,但它没有将轮廓作为一个整体.所以要将轮廓提起出来,就必须将这些边缘像素组装成轮廓. OpenCV中有一个很强大的函数,它可以从 ...

  2. OpenCV计算机视觉学习(8)——图像轮廓处理(轮廓绘制,轮廓检索,轮廓填充,轮廓近似)

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 1, ...

  3. OpenCV空洞填充算法

    讨论帖: http://bbs.csdn.net/topics/391542633 在Matlab下,使用imfill可以很容易的完成孔洞填充操作,感觉这是一个极为常用的方法,然而不知道为什么Op ...

  4. CGA填充算法之种子填充算法

    CGA填充算法之种子填充算法 平面区域填充算法是计算机图形学领域的一个很重要的算法,区域填充即给出一个区域的边界 (也可以是没有边界,只是给出指定颜色),要求将边界范围内的所有象素单元都修改成指定的颜 ...

  5. JAVA实现种子填充算法

    种子填充算法原理在网上很多地方都能找到,这篇是继上篇扫描线算法后另一种填充算法,直接上实现代码啦0.0 我的实现只是实现了种子填充算法,但是运行效率不快,如果大佬有改进方法,欢迎和我交流,谢谢! 最后 ...

  6. 种子填充算法描述及C++代码实现

    项目需要看了种子填充算法,改进了算法主要去除面积小的部分.种子填充算法分为两种,简单的和基于扫描线的方法,简单的算法如下描述(笔者针对的是二值图像): (1)从上到下,从左到有,依次扫描每个像素: ( ...

  7. 图像处理之泛洪填充算法(Flood Fill Algorithm)

    泛洪填充算法(Flood Fill Algorithm) 泛洪填充算法又称洪水填充算法是在很多图形绘制软件中常用的填充算法,最熟悉不过就是 windows paint的油漆桶功能.算法的原理很简单,就 ...

  8. 漫水填充算法 - cvFloodFill() 实现

    前言 漫水填充算法是用来标记一片区域的:设置一个种子点,然后种子点附近的相似点都被填充同一种颜色. 该算法应用性很广,比如目标识别,photoshop 的魔术棒功能等等,是填充类算法中应用最为广泛的一 ...

  9. Open gl 的不规则图形的4联通种子递归填充和扫描线种子递归填充算法实现

    实验题目:不规则区域的填充算法 实验目的:验证不规则区域的填充算法 实验内容:利用VC与OpenGL,实现不规则区域的填充算法. 1.必做:实现简单递归的不规则区域填充算法. 2.选做:针对简单递归算 ...

随机推荐

  1. xcode构建webdriverAgent时报错Messaging unqualified id的解决办法

    在使用xcode构建webdriverAgent时,提示build failed,报错信息为:semantic issue:Messaging unqualified id,可以参考以下解决方案 xc ...

  2. opencv 图像各方向旋转

    1. 简介 计算机图形学中的应用非常广泛的变换是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移.旋转.缩放.剪切这几种.本文以及接下来的几篇文章重点介绍一下关于旋转的变换,包括二维旋转变换 ...

  3. 27.8 执行定时计算限制操作(Timer)

    private static System.Threading.Timer s_Timer; static void Main() { Console.WriteLine("checking ...

  4. Beauty of Array ZOJ - 3872(思维题)

    Edward has an array A with N integers. He defines the beauty of an array as the summation of all dis ...

  5. homework week 1

    第一周的作业 首先来完成第二个作业, 编写登录接口, 因为视频上并没有相关的教程, 就在网上搜了一下读写文件的语句, 粗略了解. f1 = open("data.txt",&quo ...

  6. linux学习2-压缩与解压

    1.zip 打包文件件 $ zip -r -q -o shiyanlou.zip /home/shiyanlou $ du -h shiyanlou.zip $ file shiyanlou.zip ...

  7. Mysql双主自增长冲突处理

    Mysql双主自增长冲突处理   多主互备和主从复制有一些区别,因为多主中都可以对服务器有写权限,所以设计到自增长重复问题   出现的问题(多主自增长ID重复)  1:首先我们通过A,B的test表结 ...

  8. redo allocation latch redo copy latch

    这两个latch 是干什么的一直有点迷糊,刚才上网查了一下,总结如下: redo allocation latch 在Log Buffer中分配内存空间时需要获取Redo allocation lat ...

  9. 2.4-EN_STP

    2.4-EN_STP     增强型生成树协议(EN_STP): Spannig Tree port states: blocking 20s+listening 15s+learning 15s最后 ...

  10. Swift和Objective-C混合编程——Swift调用OC

    在iOS应用的开发中.Swift必将代替OC,两者的趋势是"短期共存,长期代替".但曾经有太多的代码是用OC语言完毕的,而Swift的开发也从 OC中继承了非常多的特性.两者也是有 ...