SCOI2003 严格N元树
SCOI2003 严格N元树
Description
如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树。如果该树中最底层的节点深度为d
(根的深度为0),那么我们称它为一棵深度为d的严格n元树。例如,深度为2的严格2元树有三个,如下图:
给出n, d,编程数出深度为d的n元树数目。
Input
仅包含两个整数n, d( 0 < n < = 32, 0 < = d < = 16)
Output
仅包含一个数,即深度为d的n元树的数目。
Sample Input
【样例输入1】
2 2
【样例输入2】
2 3
【样例输入3】
3 5
Sample Output
【样例输出1】
3
【样例输出2】
21
【样例输出2】
58871587162270592645034001
Solution
懒得打高精板子,抄了一下AK爷的,感觉比我的好2333
对于一个n元树,由教浅的树递推上来,因为每次加一层,都需要考虑深度不超过i-1的n元树的个数,把深度不超过i-1的乘起来,最后输出深度不超过d的减去深度不超过d-1的就是深度为d的n元树个数。
Code
//Writer : Hsz %WJMZBMR%tourist%hzwer
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<vector>
#include<cstdlib>
#include<algorithm>
#define LL long long
using namespace std;
const int maxn=1005;
struct bign{
int d[maxn], len;
void clean() { while(len > 1 && !d[len-1]) len--; }
bign() { memset(d, 0, sizeof(d)); len = 1; }
bign(int num) { *this = num; }
bign(char* num) { *this = num; }
bign operator = (const char* num){
memset(d, 0, sizeof(d)); len = strlen(num);
for(int i = 0; i < len; i++) d[i] = num[len-1-i] - '0';
clean();
return *this;
}
bign operator = (int num){
char s[2000]; sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator + (const bign& b){
bign c = *this; int i;
for (i = 0; i < b.len; i++){
c.d[i] += b.d[i];
if (c.d[i] > 9) c.d[i]%=10, c.d[i+1]++;
}
while (c.d[i] > 9) c.d[i++]%=10, c.d[i]++;
c.len = max(len, b.len);
if (c.d[i] && c.len <= i) c.len = i+1;
return c;
}
bign operator - (const bign& b){
bign c = *this; int i;
for (i = 0; i < b.len; i++){
c.d[i] -= b.d[i];
if (c.d[i] < 0) c.d[i]+=10, c.d[i+1]--;
}
while (c.d[i] < 0) c.d[i++]+=10, c.d[i]--;
c.clean();
return c;
}
bign operator * (const bign& b)const{
int i, j; bign c; c.len = len + b.len;
for(j = 0; j < b.len; j++) for(i = 0; i < len; i++)
c.d[i+j] += d[i] * b.d[j];
for(i = 0; i < c.len-1; i++)
c.d[i+1] += c.d[i]/10, c.d[i] %= 10;
c.clean();
return c;
}
bign operator / (const bign& b){
int i, j;
bign c = *this, a = 0;
for (i = len - 1; i >= 0; i--)
{
a = a*10 + d[i];
for (j = 0; j < 10; j++) if (a < b*(j+1)) break;
c.d[i] = j;
a = a - b*j;
}
c.clean();
return c;
}
bign operator % (const bign& b){
int i, j;
bign a = 0;
for (i = len - 1; i >= 0; i--)
{
a = a*10 + d[i];
for (j = 0; j < 10; j++) if (a < b*(j+1)) break;
a = a - b*j;
}
return a;
}
bign operator += (const bign& b){
*this = *this + b;
return *this;
}
bool operator <(const bign& b) const{
if(len != b.len) return len < b.len;
for(int i = len-1; i >= 0; i--)
if(d[i] != b.d[i]) return d[i] < b.d[i];
return false;
}
bool operator >(const bign& b) const{return b < *this;}
bool operator<=(const bign& b) const{return !(b < *this);}
bool operator>=(const bign& b) const{return !(*this < b);}
bool operator!=(const bign& b) const{return b < *this || *this < b;}
bool operator==(const bign& b) const{return !(b < *this) && !(b > *this);}
string str() const{
char s[maxn]={};
for(int i = 0; i < len; i++) s[len-1-i] = d[i]+'0';
return s;
}
};
istream& operator >> (istream& in, bign& x)
{
string s;
in >> s;
x = s.c_str();
return in;
}
ostream& operator << (ostream& out, const bign& x)
{
out << x.str();
return out;
}
bign f[35];
int n,d;
int main() {
scanf("%d%d",&n,&d);
if(d==1&&n==1) return !printf("0");
if(d==0) return !printf("1");
f[1]=1;
for(int i=1;i<=d;i++){
bign tp=1;
for(int j=1;j<=n;j++) tp=tp*f[i-1];
f[i]=f[i]+tp+1;
}
cout<<f[d]-f[d-1];
return 0;
}
SCOI2003 严格N元树的更多相关文章
- BZOJ 1089: [SCOI2003]严格n元树
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1591 Solved: 795[Submit][Statu ...
- bzoj 1089 [SCOI2003]严格n元树(DP+高精度)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1250 Solved: 621[Submit][Statu ...
- BZOJ1089: [SCOI2003]严格n元树
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 762 Solved: 387[Submit][Status ...
- 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)
[BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...
- bzoj1089 [SCOI2003]严格n元树(dp+高精)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1899 Solved: 954[Submit][Statu ...
- [BZOJ1089][SCOI2003]严格n元树(递推+高精度)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...
- 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)
http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...
- BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度
题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...
- BZOJ1089:[SCOI2003]严格n元树(DP,高精度)
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...
随机推荐
- “System.Runtime.InteropServices.COMException”类型的第一次机会异常在 ESRI.ArcGIS.Version.dll 中发生
“System.Runtime.InteropServices.COMException”类型的第一次机会异常在 ESRI.ArcGIS.Version.dll 中发生 其他信息: The speci ...
- iostat -x 1 查看磁盘的IO负载
Linux系统出现了性能问题.一般我们能够通过top.iostat,vmstat等命令来查看初步定位问题.当中iostat能够给我们提供丰富的IO状态数据 $ iostat -x -1 avg-cp ...
- Delicious Apples (hdu 5303 贪心+枚举)
Delicious Apples Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Other ...
- 解决MyEclipse开启后总是不停的在Update index
近期MyEclipse开启之后总是不停的在 update index,非常是耗时间. 查找资料发现Update index...是Maven在不断更新, 解决的方法例如以下: Window --> ...
- Android ListView拉到顶/底部,像橡皮筋一样弹性回弹复位
<Android ListView拉到顶/底部,像橡皮筋一样弹性回弹复位> Android本身的ListView拉到顶部或者底部会在顶部/底部边缘间隙出现一道"闪光&quo ...
- python:sql建表语句转换为json
第一种sql格式: CREATE TABLE prpcitem_car ( proposalno ) NOT NULL, itemno ,) NOT NULL, riskcode ) NOT NULL ...
- 关于ShapeDrawable应用的一些介绍(中)之Gradient
版权声明:本文为博主原创文章,未经博主允许不得转载. Gradient,渐变,是在界面设计中最经常用到的一种技巧,只要涉及到颜色的处理,浓妆淡抹总相宜,说的就是它. 在Android中,当然也提供了这 ...
- 深度 | AI芯片之智能边缘计算的崛起——实时语言翻译、图像识别、AI视频监控、无人车这些都需要终端具有较强的计算能力,从而AI芯片发展起来是必然,同时5G网络也是必然
from:https://36kr.com/p/5103044.html 到2020年,大多数先进的ML袖珍电脑(你仍称之为手机)将有能力执行一整套任务.个人助理将变的更加智能,它是打造这种功能的切入 ...
- python spark 求解最大 最小 平均 中位数
rating_data_raw = sc.textFile("%s/ml-100k/u.data" % PATH) print rating_data_raw.first() nu ...
- 【HDU 1847】 Good Luck in CET-4 Everybody!
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1847 [算法] 我们知道,每一种状态,要么必胜,要么必败 记忆化搜索即可 [代码] #includ ...