题解 CF911D 【Inversion Counting】
这是一道看似复杂其实也不简单的思维题。
其实思路很明显。
因为这道题的数据范围比较大,有1e5的询问,如果暴力(像我考场上那样打平衡树)的话可以做到$mnlogn$。
但那样也是稳T。
经过思考之后我们可以发现,这道题必定要使用m的解法,也就是对于每一个询问$O1$求解。(总不可能$mlogn$求解)
那么怎么$O1$呢?
众所周知,$O1$算法自古以来就和数学脱不开关系。
而本题中有哪些量可以扯上来搞一搞呢?
具体的值?肯定不现实。
那也就只剩下区间长度了。
针对区间长度进行考察之后,我们可以发现这样的一件事:
如果区间中数对个数为偶数,那么翻转之后答案不变。
否则变化。
这是为什么呢?
很显然,翻转操作是具有封闭性的。换言之,不会影响到外面的元素。
而根据我们的手动模拟,翻转后逆序对个数=数对数-翻转前逆序对个数。
于是乎正解就出来了。
我们先用树状数组搞一搞原数组的逆序对。
然后对于每一组询问,异或一下判奇偶即可。
AC代码如下:
797ms 24kb
// By Ilverene #include<bits/stdc++.h> using namespace std; namespace StandardIO{ template<typename T>inline void read(T &x){
x=;T f=;char c=getchar();
for(;c<''||c>'';c=getchar())if(c=='-')f=-;
for(;c>=''&&c<='';c=getchar())x=x*+c-'';
x*=f;
} template<typename T>inline void write(T x){
if(x<)putchar('-'),x*=-;
if(x>=)write(x/);
putchar(x%+'');
} } using namespace StandardIO; namespace Solve{ // Define your constants here.
const int N=; // Define your global variables here.
int n,m,s=,a[N],b[N];
// Define your main functions here.
template<typename _Tp>inline _Tp query(_Tp x){
int res=;
for(int i=x;i;i-=i&-i)res+=b[i];
return res;
}
void update(int x){
for(int i=x;i<=n;i+=i&-i)++b[i];
} inline void solve(){
// Write your main logic here.
read(n);
for(int i=;i<=n;++i)read(a[i]);
for(int i=n;i>=;--i){
s=(s+query(a[i]-))&;
update(a[i]);
}
read(m);
while(m--){
int l,r;
read(l),read(r);
if(((r-l+)*(r-l)/)&)s^=,printf(s?"odd":"even");
else printf(s?"odd":"even");
putchar('\n');
}
}
} using namespace Solve; int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
solve();
}
题解 CF911D 【Inversion Counting】的更多相关文章
- [CF911D]Inversion Counting
题目大意: 给你一个数列,翻转其中一个区间,问每次翻转过后逆序对个数的奇偶性. 思路: 首先树状数组求出一开始的奇偶性,然后考虑每次翻转对答案的贡献. 对于整个区间,我们可以把翻转转化成若干次交换. ...
- Codeforces 911D. Inversion Counting (数学、思维)
题目链接:Inversion Counting 题意: 定义数列{ai|i=1,2,...,n}的逆序对如下:对于所有的1≤j<i≤n,若ai<aj,则<i,j>为一个逆序对. ...
- 【Educational Codeforces Round 35 D】Inversion Counting
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 排列中交换任意两个数字. 排列的逆序对个数的奇偶性会发生变化. 翻转这个过程其实就是len/2对数字发生交换. 交换了偶数次的话,不 ...
- 【Codeforces】CF 911 D. Inversion Counting(逆序对+思维)
题目 传送门:QWQ 分析 思维要求比较高. 首先我们要把原图的逆序对q算出来. 这个树状数组或归并排序都ok(树状数组不用离散化好评) 那么翻转$[l,r]$中的数怎么做呢? 暴力过不了,我试过了. ...
- 题解 CF1375E Inversion SwapSort
蒟蒻语 这题是真的奇妙... 想了好久才想明白. 蒟蒻解 考虑冒泡排序是怎样的. 对于相邻的两个数 \(a_i, a_{i+1}\),如果 \(a_i>a_{i+1}\) 那么就交换两个数. 总 ...
- Counting The Important Pairs CodeChef - TAPAIR
https://vjudge.net/problem/CodeChef-TAPAIR 合法的删除方法: 第一种:桥边与其余任意边(1)桥*(桥-1)/2(两条桥边)(2)桥*(m-桥)(桥边+其他边) ...
- Educational Codeforces Round 35 (Rated for Div. 2)A,B,C,D
A. Nearest Minimums time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- gym101343 2017 JUST Programming Contest 2.0
A.On The Way to Lucky Plaza (数论)题意:m个店 每个店可以买一个小球的概率为p 求恰好在第m个店买到k个小球的概率 题解:求在前m-1个店买k-1个球再*p ...
- Educational Codeforces Round 35 B/C/D
B. Two Cakes 传送门:http://codeforces.com/contest/911/problem/B 本题是一个数学问题. 有a个Ⅰ类球,b个Ⅱ类球:有n个盒子.将球放入盒子中,要 ...
随机推荐
- NOI2018 你的名字 后缀自动机_线段树合并_可持久化
相当复杂的一道题,同样也相当优美.考察的知识点很多:权值线段树的可持久化合并,后缀自动机,后缀树... 考虑 $68pts$ $l=1,r=|s|$的数据:这部分相对好做一些,不过思维难度对我来说已 ...
- [USACO4.1]篱笆回路Fence Loops
题目:USACO Training 4.1(在官网上提交需加文件输入输出).洛谷P2738. 题目大意:给你一张图里的边集,让你求出这张图的最小环. 解题思路:求最小环很简单,用Floyd即可.最重要 ...
- Linux 和 Windows 双系统时间同步问题 修改注册表
路径:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation 1:新建 >> DWORD(32 b ...
- python 中i++、逻辑表达式
参考链接:https://www.cnblogs.com/yupeng/p/3345946.html i++运算符 python中没有类似i++之类实现+1的运算符,但是有++i,+-i.之类的,他们 ...
- [置顶]
Netty学习总结(1)——Netty入门介绍
1.Netty是什么? Netty是一个基于JAVA NIO类库的异步通信框架,它的架构特点是:异步非阻塞.基于事件驱动.高性能.高可靠性和高可定制性. 2.使用Netty能够做什么? 开发异步.非阻 ...
- 2015 Multi-University Training Contest 3 hdu 5326 Work
Work Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- 压缩和还原压缩的JS代码
压缩JS代码:packer – 最好用的 javascript 压缩工具地址: http://dean.edwards.name/packer/ http://kan.willin.org/?page ...
- OO问题
设计一个在线的酒店预订系统,并且可以通过城市搜索出来 解决办法: Main Class: User Room Hotel Booking Adress Enums : 房间的状态和类型 public ...
- 6、Java类、对象、构造器、引用类型内存基本知识、引用类型值传递
1.面向对象三大特征: 封装:encapsulation 继承:inheritance 多态:polymorphism 2.类中 数据特征(property):属性(attribute)静态的stat ...
- 操作指定文件格式的10个Perl CPAN模块
在Perl开发中,非常可能会碰到一些不同格式的文件--XML.PDF.CSV及RSS文件等,和一些不同的二进制数据格式.Perl应用程序须要操作这些文件,对它们进行读写. 此时.能够求助于全面Perl ...