写几组数据就会发现规律了啊。

。但是我是竖着看的。。

。还找了半天啊、、、

只是要用高精度来写,水题啊。就当熟悉一下java了啊。

num[i] = 2*num[i-1]-num[i-2-k]。

1513. Lemon Tale

Time limit: 1.0 second

Memory limit: 64 MB

Background

For each programmer a point comes when the last contest is lost, and it is time to retire. Even Three Programmers themselves could not escape the common lot. But the Programmers also wanted to keep
a good memory about themselves. For this noble purpose they created problems and organized extremely popular programming contests from time to time. Of course, this work was not well paid, but for true programmers a glory was more important than money.
However it is only the first half of a job to think out a brilliant problem. The second one is to create a politically correct statement for it.

Problem

The matter is the statement of some problem for the upcoming contest was written by the Third Programmer, who knew nothing about political correctness. He just wrote a story about citrus plants growing.
As a result a word "lemon" was mentioned N times in the statement.
Besides, the problem is to be looked through by famous censor Alexander K. right before the contest. And it is a known fact, that lemons remind him of oranges he hates furiously. It worries the First
and the Second Programmers greatly - they know exactly, that if a word "lemon" occurs more than Ktimes successively, the problem will be immediately disqualified from the contest.
That is why the First and the Second Programmers connived secretly to login to the server at the eve of the contest and replace some "lemons" with much more politically correct "bananas" so that the
problem could not be disqualified. How many ways are there to do it?

Input

The only line contains the integer numbers N (1 ≤ N ≤ 10000) and K (0 ≤ K ≤ N).

Output

You should output the desired number of ways.

Sample

input output
5 2
24

Hint

Let us denote a word "lemon" by a letter "L" and a word "banana" by a letter "B". So in the sample the initial sequence of words "LLLLL" might be transformed into the following politically correct sequences:
"LLBLL", "LLBLB", "LLBBL", "LLBBB", "LBLLB", "LBLBL", "LBLBB", "LBBLL", "LBBLB", "LBBBL", "LBBBB", "BLLBL", "BLLBB", "BLBLL", "BLBLB", "BLBBL", "BLBBB", "BBLLB", "BBLBL", "BBLBB", "BBBLL", "BBBLB", "BBBBL" and "BBBBB".
import java.math.BigInteger;
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner cin = new Scanner(System.in);
int n, k;
BigInteger num[] = new BigInteger [100005];
while(cin.hasNext())
{
n = cin.nextInt();
k = cin.nextInt();
BigInteger ans;
BigInteger p = BigInteger.valueOf(2);
ans = p.pow(n);
if(k == 0)
{
System.out.println(1);
continue;
}
if(n == k)
{
System.out.println(ans);
continue;
}
num[0] = BigInteger.valueOf(1);
for(int i = 1; i <= k+1; i++)
{
num[i] = p.pow(i-1);
}
for(int i = k+2; i <= n; i++)
{
num[i] = num[i-1].multiply(BigInteger.valueOf(2));
num[i] = num[i].subtract(num[i-2-k]);
}
ans = BigInteger.valueOf(0);
for(int i = n; i >= (n-k); i--)
{
ans = ans.add(num[i]);
}
System.out.println(ans);
}
}
}

URAL 1513. Lemon Tale(简单的递推)的更多相关文章

  1. URAL 1513 Lemon Tale

    URAL 1513 思路: dp+高精度 状态:dp[i][j]表示长度为i末尾连续j个L的方案数 初始状态:dp[0][0]=1 状态转移:dp[i][j]=dp[i-1][j-1](0<=j ...

  2. HDU 2569(简单的递推)

    彼岸 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submissi ...

  3. 【图灵杯 F】一道简单的递推题(矩阵快速幂,乘法模板)

    Description 存在如下递推式: F(n+1)=A1*F(n)+A2*F(n-1)+-+An*F(1) F(n+2)=A1*F(n+1)+A2*F(n)+-+An*F(2) - 求第K项的值对 ...

  4. URAL 1009 K-based numbers(DP递推)

    点我看题目 题意 : K进制的N位数,不能有前导零,这N位数不能有连续的两个0在里边,问满足上述条件的数有多少个. 思路 : ch[i]代表着K进制的 i 位数,不含两个连续的0的个数. 当第 i 位 ...

  5. Flags-Ural1225简单递推

    Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...

  6. UVa 825【简单dp,递推】

    UVa 825 题意:给定一个网格图(街道图),其中有一些交叉路口点不能走.问从西北角走到东南角最短走法有多少种.(好像没看到给数据范围...) 简单的递推吧,当然也就是最简单的动归了.显然最短路长度 ...

  7. UVA10943简单递推

    题意:      给你两个数字n,k,意思是用k个不大于n的数字组合(相加和)为n一共有多少种方法? 思路:       比较简单的递推题目,d[i][j]表示用了i个数字的和为j一共有多少种情况,则 ...

  8. [LeetCode] 递推思想的美妙 Best Time to Buy and Sell Stock I, II, III O(n) 解法

    题记:在求最大最小值的类似题目中,递推思想的奇妙之处,在于递推过程也就是比较求值的过程,从而做到一次遍历得到结果. LeetCode 上面的这三道题最能展现递推思想的美丽之处了. 题1 Best Ti ...

  9. 算法技巧讲解》关于对于递推形DP的前缀和优化

    这是在2016在长沙集训的第三天,一位学长讲解了“前缀和优化”这一技巧,并且他这一方法用的很6,个人觉得很有学习的必要. 这一技巧能使线性递推形DP的速度有着飞跃性的提升,从O(N2)优化到O(N)也 ...

随机推荐

  1. mongodb报错:connection refused because too many open connections: 819

    问题: 发现mongodb无法连接,查看mongodb日志,出现大量的如下报错: [initandlisten] connection refused because too many open co ...

  2. javascript 异或运算符实现简单的密码加密功能

    写在前面的 当我们需要在数据库中存储用户的密码时,当然是不能明文存储的. 我们就是介绍一下用^运算符来实现简单的密码加密以及解密功能 上代码 首先,回顾一下基础知识. String.fromCharc ...

  3. SpaceVim配置中遇到的问题

    这是一个不断更新的随笔,若遇到SpaceVim配置问题时,会添加项 字体乱码(linux企鹅乱码,tabline图标乱码等) git clone https://github.com/powerlin ...

  4. [HEOI2012]采花(树状数组+离线)

    听说这题的所发和HH的项链很像. 然而那道题我使用莫队写的... 这是一个套路,pre数组加升维(在线). 记录一个\(pre\)数组,\(pre[i]\)代表上一个和i颜色相同的下标. 我们把询问离 ...

  5. linux 安装常用库

    在CentOS安装软件的时候,可能缺少一部分支持库,而报错.这里首先安装系统常用的支持库.那么在安装的时候就会减少很多的错误的出现. [root@bogon 桌面]#  yum install -y ...

  6. redhat下搭建jdk+tomcat环境

    由于redhat自带安装了jdk,我们需要现将其进行卸载 卸载系统自带的jdk版本: 查看自带的jdk: 输入命令:rpm -qa|grep gcj 可能看到如下类似的信息: libgcj-4.1.2 ...

  7. 【BZOJ 1191】[HNOI2006]超级英雄Hero

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 二分图的最大匹配. 因为要答下一题,这一题必须先答完. 所以如果某道题没有匹配了. 那么就直接break掉. [代码] #inclu ...

  8. [WebGL入门]十五,为多边形涂抹颜色(顶点颜色的指定)

    注:文章译自http://wgld.org/.原作者杉本雅広(doxas),文章中假设有我的额外说明,我会加上[lufy:].另外.鄙人webgl研究还不够深入.一些专业词语.假设翻译有误.欢迎大家指 ...

  9. Block的使用--初探Block

    看了两天的Block. 网上是有非常多解说与教程,也有讲得非常好的.这里就主要解说下我的理解与收获.欢迎拍砖. 所谓block.我觉得应该是一个闭包函数.而闭包,就是说block以及内部全部的变量生命 ...

  10. mongodb官网文档阅读笔记:与写性能相关的几个因素

    Indexes 和全部db一样,索引肯定都会引起写性能的下降,mongodb也没啥特别的,相对索引对读性能的提示,这些消耗通常是能够接受的,所以该加入的索引还是要加入.当然须要慎重一些.扯点远的,以前 ...