python编写PAT甲级 1007 Maximum Subsequence Sum

wenzongxiao1996

2019.4.3

题目

Given a sequence of K integers { N​1, N2, ..., N​K}. A continuous subsequence is defined to be { N​i, N​i+1, ..., N​j} where 1≤i≤j≤K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:

10

-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:

10 1 4

暴力解法(超时了)

def seq_sum(s):
"""求序列的所有元素之和"""
result = 0
for i in range(len(s)):
result += s[i]
return result def main():
n = int(input())
seq = [int(i) for i in input().split()]
max = -1
pos_i = 0
pos_j = n-1
for i in range(n):
for j in range(i,n):
sum_temp = seq_sum(seq[i:j+1])
if sum_temp > max:
max = sum_temp
pos_i = i
pos_j = j
if max < 0:
print(0,seq[pos_i],seq[pos_j])
else:
print(max,seq[pos_i],seq[pos_j]) if __name__ == '__main__':
main()

分治法

def division_solution(seq,left,right):
if left == right: # 递归出口
if seq[left] >= 0:
return left,right,seq[left]
else:
return left,right,-1
center = (left+right)//2 # 地板除 # 从中间到左边的最大子串
sum_left = 0
max_sum_left = -1 # 一定要设为负数
pos_left = left # 要返回下标
for i in range(left,center+1)[::-1]: # 反向迭代
sum_left += seq[i]
if sum_left >= max_sum_left:
max_sum_left = sum_left
pos_left = i # 从中间到右边的最大子串
sum_right = 0
max_sum_right = -1 # 一定要设为负数
pos_right = right # 要返回下标
for i in range(center+1,right+1):
sum_right += seq[i]
if sum_right > max_sum_right:
max_sum_right = sum_right
pos_right = i # 递归求解左右两个子问题
i_left,j_left,max_left_sum = division_solution(seq,left,center)
i_right,j_right,max_right_sum = division_solution(seq,center+1,right) if max(max_left_sum,max_right_sum,max_sum_left+max_sum_right) < 0:
return left,right,-1
else:
if max(max_left_sum,max_right_sum,max_sum_left+max_sum_right) == max_left_sum:
return i_left,j_left,max_left_sum
elif max(max_left_sum,max_right_sum,max_sum_left+max_sum_right) == max_right_sum:
return i_right,j_right,max_right_sum
else:
return pos_left,pos_right,max_sum_left+max_sum_right def main():
n = int(input())
seq = [eval(i) for i in input().split()]
i,j,sum_max = division_solution(seq,0,n-1)
if sum_max < 0:
print(0,seq[0],seq[-1])
else:
print(sum_max,seq[i],seq[j]) if __name__ == '__main__':
main()

动态规划

def main():
n = int(input())
seq = [eval(i) for i in input().split()]
sum_max = -1
pos_i = 0
pos_i_temp = 0 # 最大子序列的左下标不能随意更改,只有找到了更大的子串才能改,用这个变量先保存着当前寻找的子串的左下标
pos_j = n-1
sum_temp = 0
for i in range(n):
sum_temp += seq[i]
if sum_temp > sum_max:
sum_max = sum_temp
pos_j = i
pos_i = pos_i_temp
elif sum_temp < 0:# 和小于0的子串不需要考虑
sum_temp = 0
pos_i_temp = i+1
if sum_max < 0:
print(0,seq[0],seq[-1])
else:
print(sum_max,seq[pos_i],seq[pos_j]) if __name__ == '__main__':
main()

谢谢观看!敬请指正!

参考博客:https://www.cnblogs.com/allzy/p/5162815.html

原题链接:https://pintia.cn/problem-sets/994805342720868352/problems/994805514284679168

python编写PAT 1007 Maximum Subsequence Sum(暴力 分治法 动态规划)的更多相关文章

  1. PAT 1007 Maximum Subsequence Sum (25分)

    题目 Given a sequence of K integers { N​1​​ , N​2​​ , ..., N​K​​ }. A continuous subsequence is define ...

  2. 1007 Maximum Subsequence Sum (25分) 求最大连续区间和

    1007 Maximum Subsequence Sum (25分)   Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A ...

  3. 1007 Maximum Subsequence Sum (25 分)

    1007 Maximum Subsequence Sum (25 分)   Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A ...

  4. PAT 1007 Maximum Subsequence Sum(最长子段和)

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  5. PAT 1007 Maximum Subsequence Sum 最大连续子序列和

    Given a sequence of K integers { N1, N2, …, NK }. A continuous subsequence is defined to be { Ni, Ni ...

  6. PAT Advanced 1007 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous subsequence is defined to ...

  7. PAT 1007 Maximum Subsequence Sum (最大连续子序列之和)

    Given a sequence of K integers { N1, N2, ..., *N**K* }. A continuous subsequence is defined to be { ...

  8. 数据结构课后练习题(练习一)1007 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous subsequence is defined to ...

  9. [pat]1007 Maximum Subsequence Sum

    经典最大连续子序列,dp[0]=a[0],状态转移dp[i]=max(dp[i-1]+a[i],a[i])找到最大的dp[i]. 难点在于记录起点,这里同样利用动态规划s[i],如果dp[i]选择的是 ...

随机推荐

  1. [MST] Test mobx-state-tree Models by Recording Snapshots or Patches

    Testing models is straightforward. Especially because MST provides powerful tools to track exactly h ...

  2. Python 入门学习 -----变量及基础类型(元组,列表,字典,集合)

    Python的变量和数据类型 1 .python的变量是不须要事先定义数据类型的.能够动态的改变 2. Python其中一切皆对象,变量也是一个对象,有自己的属性和方法 我们能够通过 来查看变量的类型 ...

  3. thinkphp5.0的验证码安装和相关错误

    thinkphp5.0的验证码安装和相关错误 问题 只要是之前使用thinkphp5框架搭建网站的时候发现不管如何调用验证码都无法使用,按照官网要求,使用composer安装验证码出现报错Fatal ...

  4. 1.MySQL与MongoDB的操作对比,以及区别

    转自:https://www.cnblogs.com/chris-oil/p/4982490.html MySQL与MongoDB都是开源的常用数据库,但是MySQL是传统的关系型数据库,MongoD ...

  5. Oracle 建表

    -- Create table create table STUDENT ( sno ) not null, sname ) not null, ssex ) not null, sbirthday ...

  6. jquery on event

    <!doctype html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  7. php八大设计模式之策略模式

    策略模式提供一个虚拟的整体,根据不同的要求(参数)提供不同的"零件"(调用不同的"零件"实现不同的结果). <?php /** * 策略模式 * 跟工厂模 ...

  8. ES6学习4 变量的解构赋值

    变量的解构赋值 一.数组结构赋值 1.数组结构赋值 let [a, b, c] = [1, 2, 3]; ES6 可以从数组中提取值,按照对应位置,对变量赋值. 1)  本质上,这种写法属于“模式匹配 ...

  9. 洛谷3388 【模板】割点 tarjan算法

    题目描述 给出一个n个点,m条边的无向图,求图的割点. 关于割点 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articul ...

  10. Spring-statemachine Action不能并发执行的问题

    Spring-statemachine版本:当前最新的1.2.3.RELEASE版本 这几天一直被Action是串行执行搞得很郁闷,写了一个demo专门用来测试: public static void ...