tensorflow的命名来源于本身的运行原理,tensor(张量)意味着N维数组,flow(流)意味着基于数据流图的计算,所以tensorflow字面理解为张量从流图的一端流动到另一端的计算过程。

tensorflow中的所有数据如图片、语音等都是以张量这种数据结构的形式表示的。张量是一种组合类型的数据类型,表示为一个多维数组,通用的表示形式为
[T1,T2,T3,…Tn]  ,其中 T  可以是在tensorflow中指定类型的单个数字,也可以是一个矩阵。

张量(tensor)的属性——维数(阶)、形状和数据类型

张量的维数又叫张量的阶,是张量维数的一个数量描述。如下分别表示0维、1维、2维和3维的张量:

1    #维度为0的标量
[1,2,3] #维度为1,一维向量
[[1,2],[3,4]] #维度为2, 二维矩阵
[[[1,2],[3,4]],[[1,2],[3,4]]] #维度为3,3维空间矩阵

维度要看张量的最左边有多少个左中括号,有n个,则这个张量就是n维张量

张量的形状以  [D0, D1, … Dn-1]  的形式表示,D0 Dn 是任意的正整数。

如形状[3,4]表示第一维有3个元素,第二维有4个元素,[3,4]表示一个3行4列的矩阵。

在形状的中括号中有多少个数字,就代表这个张量是多少维的张量

形状的第一个元素要看张量最外边的中括号中有几个元素(被最外边的中括号里边的内中括号括起来的所有数据算作一个元素)被逗号隔开,有n1个则这个张量就是n1维的,形状的第一个元素就是n1;

形状的第二个元素要看张量中最左边的第二个中括号中有几个被逗号隔开的元素,有n2个则shape的第二个元素就是n2;形状的第二个元素之后的第3,4…n个元素依次类推,分别看第n个中括号中有几个元素即可:

1    # 形状为[]
[1,2,3] # 形状为[3]
[[1,2],[3,4]] # 形状为[2,2]
[[[1,2],[3,4]],[[1,2],[3,4]]] # 形状为[2,2,2]


张量的数据类型

张量的数据类型可以是以下数据类型中的任意一种:

数据类型 Python 类型 描述
DT_FLOAT tf.float32 32 位浮点数.
DT_DOUBLE tf.float64 64 位浮点数.
DT_INT64 tf.int64 64 位有符号整型.
DT_INT32 tf.int32 32 位有符号整型.
DT_INT16 tf.int16 16 位有符号整型.
DT_INT8 tf.int8 8 位有符号整型.
DT_UINT8 tf.uint8 8 位无符号整型.
DT_STRING tf.string 可变长度的字节数组.每一个张量元素都是一个字节数组.
DT_BOOL tf.bool 布尔型.
DT_COMPLEX64 tf.complex64 由两个32位浮点数组成的复数:实数和虚数.
DT_QINT32 tf.qint32 用于量化Ops的32位有符号整型.
DT_QINT8 tf.qint8 用于量化Ops的8位有符号整型.
DT_QUINT8 tf.quint8 用于量化Ops的8位无符号整型.

tensorflow中张量(tensor)的属性——维数(阶)、形状和数据类型的更多相关文章

  1. TensorFlow中的 tensor 张量到底是什么意思?

    详见[Reference]: TensorFlow中的“Tensor”到底是什么? 以下摘录一些要点: 这个图好生动呀!~ 标量和向量都是张量(tensor).

  2. tensorflow中张量_常量_变量_占位符

    1.tensor 在tensorflow中,数据是被封装在tensor对象中的.tensor是张量的意思,即包含从0到任意维度的张量.常数是0维度的张量,向量是1维度的张量,矩阵是二维度的张量,以及还 ...

  3. tensorflow中张量的理解

    自己通过网上查询的有关张量的解释,稍作整理. TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中 ...

  4. Tensorflow中张量数据类型的转换

    https://blog.csdn.net/Tramac/article/details/74942587 字符串转为数字: tf.string_to_number (string_tensor, o ...

  5. TensorFlow 中的张量,图,会话

    tensor的含义是张量,张量是什么,听起来很高深的样子,其实我们对于张量一点都不陌生,因为像标量,向量,矩阵这些都可以被认为是特殊的张量.如下图所示: 在TensorFlow中,tensor实际上就 ...

  6. 获取tensorflow中tensor的值

    tensorflow中的tensor值的获取: import tensorflow as tf #定义变量a a=tf.Variable([[[1,2,3],[4,5,6]],[[7,8,9],[10 ...

  7. TensorFlow之张量

    张量的概念 TensorFlow中的Tensor就是张量,张量是数学对象,是对标量.向量.矩阵的泛化.我们可以直接理解成张量就是列表,就是多维数组. 张量的维数用阶来表示: 0阶张量 标量 单个值 例 ...

  8. python/numpy/tensorflow中,对矩阵行列操作,下标是怎么回事儿?

    Python中的list/tuple,numpy中的ndarrray与tensorflow中的tensor. 用python中list/tuple理解,仅仅是从内存角度理解一个序列数据,而非数学中标量 ...

  9. Tensorflow中的run()函数

    1 run()函数存在的意义 run()函数可以让代码变得更加简洁,在搭建神经网络(一)中,经历了数据集准备.前向传播过程设计.损失函数及反向传播过程设计等三个过程,形成计算网络,再通过会话tf.Se ...

随机推荐

  1. 安装Linux CentOS与用Xshell实现远程连接

    注意,进入后有一个选择skip和OK的,选择skip 网络问题 vi /etc/sysconfig/network-scripts/ifcfg-eth0  //打开网络配置文件 ONBOOT=no  ...

  2. 安装virtualBox 增强包

    1 在原始操作系统安装. 2 打开USB设置. 3 运行虚拟机中的Linux中,Device->install guest additions 再安装增强包. 4 插入U盘,如果这时可以看到U盘 ...

  3. USB设备驱动程序(二)

    首先我们来看USB设备描述符的结构: 在USB总线识别设备阶段就将USB描述符发送给了USB总线驱动程序,设备的数据传输对象是端点,端点0是特殊端点,在USB总线驱动程序识别阶段, 会分配一个地址给U ...

  4. EasyPlayer播放器浏览器ActiveX/OCX插件RTSP播放/抓拍/录像功能调用说明

    EasyPlayerPro与EasyPlayer-RTSP新增ocx多窗口播放功能 这里以EasyPlayerPro为例,使用方法如下: 打开播放器文件夹,进入Bin/C++目录,可以看到reg.ba ...

  5. 小米4s经常断网

    https://zhidao.baidu.com/question/1387985910554061020.html

  6. 我的Android进阶之旅------>解决 Error: ShouldNotReachHere() 问题

    在Android项目中创建一个包含main()方法的类,直接右键运行该类时会报如下错误: # # An unexpected error has been detected by Java Runti ...

  7. 丢失vcruntime140.dll

    我在php7安装yaf时报了标题所提示的错误信息. 解决方案是:下载vc++2015 并安装 链接如下:https://www.microsoft.com/zh-cn/download/confirm ...

  8. ThinkPHP5.0 用docker部署

    Dockerfile 文件如下: FROM hub.c.163.com/shenggen/thinkphp-docker:v0.0.1 ADD . /app RUN ["chmod" ...

  9. Java的接口和抽象类(转发:http://www.importnew.com/18780.html)

    深入理解Java的接口和抽象类 对于面向对象编程来说,抽象是它的一大特征之一.在Java中,可以通过两种形式来体现OOP的抽象:接口和抽象类.这两者有太多相似的地方,又有太多不同的地方.很多人在初学的 ...

  10. QT发布的EXE打包压缩成单文件

    Enigma virtual box 是免费的软件虚拟化工具,它可以将多个文件封装到您的应用程序主文件,这样您的软件就可以制作成为单文件的绿色软件. enigma virtual box 支持所有类型 ...