Good Luck in CET-4 Everybody!

HDU - 1847

大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。 
“升级”?“双扣”?“红五”?还是“斗地主”? 
当然都不是!那多俗啊~ 
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的: 
1、  总共n张牌; 
2、  双方轮流抓牌; 
3、  每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…) 
4、  抓完牌,胜负结果也出来了:最后抓完牌的人为胜者; 
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢? 
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。

Good luck in CET-4 everybody!

Input输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。Output如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。 
Sample Input

1
3

Sample Output

Kiki
Cici
/*
巴什博奕:
定理:只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.
n=(m+1)r+s,(r为任意自然数,s<=m),即n%(m+1)!=0,则先取者肯定获胜。
对于这个题来说:如果你是先手,那么请考虑你的必胜点。由于规定只能去2的幂次,那么只要你留给对手的牌数为3的倍数时,那么你就必赢,因为留下3的倍数时,对手有两种情况:1,要么取剩下1,给你胜利 2,要么对手取了一点点儿,轮到你时,你就又可以构造一个3的倍数了嘛。 所以无论哪种情况,当你留给对手为3N的时候,你是必胜的。
*/
#include<iostream>
#include<cstdio>
using namespace std;
int n;
int main(){
while(scanf("%d",&n)!=EOF){
if(n%==)puts("Cici");
else puts("Kiki");
}
return ;
}

hdu 1847 Good Luck in CET-4 Everybody!(巴什博弈)的更多相关文章

  1. HDU 1847 Good Luck in CET-4 Everybody! 四级好运!(博弈)

    思路:先用P/N状态来找规律. N状态:1 2 4 6 8 16 P状态:3 5 因为3=1+2, 无论拿1或者2皆输.看看5,只要抽掉2就变成了3,所以是N状态.看看6,可以抽掉1 2 4,若抽1, ...

  2. HDU.1847 Good Luck in CET-4 Everybody! ( 博弈论 SG分析)

    HDU.1847 Good Luck in CET-4 Everybody! ( 博弈论 SG分析) 题意分析 简单的SG分析 题意分析 简单的nim 博弈 博弈论快速入门 代码总览 //#inclu ...

  3. HDU 1847 Good Luck in CET-4 Everybody! (巴什博弈)

    题目链接:HDU 1847 Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此. ...

  4. HDU 1847 Good Luck in CET-4 Everybody! (博弈)

    题意:不用说了吧,都是中文的. 析:虽说这是一个博弈的题,但是也很简单的,在说这个题目前我们先说一下巴什博弈定理. 巴什博弈定理:一堆物品有n个,有两个人(两个人足够聪明)轮流取,规定每次至少取一个, ...

  5. HD1847 Good Luck in CET-4 Everybody!(巴什博弈)

    巴什博弈: 一堆物品n个,最多取m个,最少取1个,最后取走的人获胜 分析:只要保证取玩最后剩m+1个,则必定胜利,所以构造m+1,只要n是 m+1的倍数,则先手必败,每次先手取玩,后手可取使得剩下的仍 ...

  6. HDU 1847 Good Luck in CET-4 Everybody!(规律,博弈)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. HDU 1847 Good Luck in CET-4 Everybody!(找规律,或者简单SG函数)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  8. HDU 1847 Good Luck in CET-4 Everybody! (博弈论sg)

    Good Luck in CET-4 Everybody! Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?或许紧张得连短学期的ACM都没工夫练习了.反正我知 ...

  9. HDU 1847 Good Luck in CET-4 Everybody!(找规律版巴什博奕)

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

随机推荐

  1. Sqlte 知识点记录

    1.表存在 select count(*) from sqlite_master where type='table' and name='MyTable'; sql),path ))"; ...

  2. 解决Eclipse和myeclipse在进行 html,jsp等 页面编辑时,自动格式化变丑的问题

    在eclipse和myelipse写JAVA代码时中使用ctrl+shift+f 快捷键自动排版省时又省力,排版后的代码规范美观又层次性,但在我们写jsp或html代码时,使用这个快捷键排版简直奇丑无 ...

  3. pthread_cond_wait()用法分析

    很久没看APUE,今天一位朋友问道关于一个mutex的问题,又翻到了以前讨论过的东西,为了不让自己忘记,把曾经的东西总结一下. 先大体看下网上很多地方都有的关于pthread_cond_wait()的 ...

  4. [原]NYOJ-小光棍数-458

    大学生程序代写 /http://acm.nyist.net/JudgeOnline/problem.php?pid=458 *题目458题目信息运行结果本题排行讨论区小光棍数 时间限制:1000 ms ...

  5. [POI 2018] Plan Metra

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=5100 [算法] 首先分两类考虑 : 1. 1 -> N的路径不经过其它节点 , ...

  6. 洛谷 P4546 & bzoj 5020 在美妙的数学王国中畅游 —— LCT+泰勒展开

    题目:https://www.luogu.org/problemnew/show/P4546 先写了个55分的部分分,直接用LCT维护即可,在洛谷上拿了60分: 注意各处 pushup,而且 spla ...

  7. bzoj 1941 Hide and Seek —— K-D树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1941 曼哈顿最小距离估价:max( 0, t[x].mn[i] - v.p[i] ) + m ...

  8. ssh-keygen和ssh-copy-id的简单使用

    实验环境是CentOS7: ssh-keygen产生公钥和私钥对. ssh-copy-id:将本机的公钥使用ssh协议复制到远程的客户端,ssh协议的公钥和私钥一般存放于~/.ssh下 #主机 [ro ...

  9. WPF Invoke与BeginInvoke的区别

    Control.Invoke 方法 (Delegate) :在拥有此控件的基础窗口句柄的线程上执行指定的委托. Control.BeginInvoke 方法 (Delegate) :在创建控件的基础句 ...

  10. LAMP 2.0Apache日志切割

    每次访问网站就会产生若干条日志,当然前提是已经配置了日志. 配置日志的文件在 vim /usr/local/apache2/conf/extra/httpd-vhosts.conf 把注释掉的这两行打 ...