【洛谷1501】[国家集训队] Tree II(LCT维护懒惰标记)
大致题意: 有一棵初始边权全为\(1\)的树,四种操作:将两点间路径边权都加上一个数,删一条边、加一条新边,将两点间路径边权都加上一个数,询问两点间路径权值和。
序列版
这道题有一个序列版:【洛谷3373】【模板】线段树 2。
看题目就知道是一道线段树板子题。
这种题目移到树上路径中,且要删边加边,是\(LCT\)无疑了。
\(LCT\)维护懒惰标记
可以说,这道题就是上面那题的翻版。
同样维护两个标记:乘法标记和加法标记,加上原有的翻转标记,共三个标记。
具体细节其实可以详见上面提到的那道线段树板子题,这里就不多说了。
主要是要注意标记下传与更新的优先级问题,应该是乘法先,加法后,至于翻转标记在前在后都无所谓。
代码
#include<bits/stdc++.h>
#define N 100000
#define MOD 51061
#define swap(x,y) (x^=y^=x^=y)
#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))
using namespace std;
int n,ee,lnk[N+5];
class Class_FIO
{
private:
#define Fsize 100000
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,Fsize,stdin),A==B)?EOF:*A++)
#define pc(ch) (FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,Fsize,stdout),Fout[(FoutSize=0)++]=ch))
int Top,FoutSize;char ch,*A,*B,Fin[Fsize],Fout[Fsize],Stack[Fsize];
public:
Class_FIO() {A=B=Fin;}
inline void read(int &x) {x=0;while(!isdigit(ch=tc()));while(x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));}
inline void readc(char &x) {while(isspace(x=tc()));}
inline void writeln(int x) {while(Stack[++Top]=x%10+48,x/=10);while(Top) pc(Stack[Top--]);pc('\n');}
inline void clear() {fwrite(Fout,1,FoutSize,stdout),FoutSize=0;}
}F;
class Class_LCT//LCT板子
{
private:
#define LCT_SIZE N
#define PushUp(x) (node[x].Size=node[node[x].Son[0]].Size+node[node[x].Son[1]].Size+1,node[x].Sum=(node[x].Val+node[node[x].Son[0]].Sum+node[node[x].Son[1]].Sum)%MOD)
#define MulVal(x,v) (node[x].Sum=1LL*node[x].Sum*v%MOD,node[x].Val=1LL*node[x].Val*v%MOD,node[x].flag1=1LL*node[x].flag1*v%MOD,node[x].flag2=1LL*node[x].flag2*v%MOD)
#define AddVal(x,v) (Inc(node[x].Sum,1LL*node[x].Size*v%MOD),Inc(node[x].Val,v),Inc(node[x].flag2,v))
#define Rever(x) (swap(node[x].Son[0],node[x].Son[1]),node[x].Rev^=1)
#define PushDown(x)\
(\
node[x].flag1^1&&(MulVal(node[x].Son[0],node[x].flag1),MulVal(node[x].Son[1],node[x].flag1),node[x].flag1=1),\
node[x].flag2&&(AddVal(node[x].Son[0],node[x].flag2),AddVal(node[x].Son[1],node[x].flag2),node[x].flag2=0),\
node[x].Rev&&(Rever(node[x].Son[0]),Rever(node[x].Son[1]),node[x].Rev=0)\
)
#define Which(x) (node[node[x].Father].Son[1]==x)
#define Connect(x,y,d) (node[node[x].Father=y].Son[d]=x)
#define IsRoot(x) (node[node[x].Father].Son[0]^x&&node[node[x].Father].Son[1]^x)
#define MakeRoot(x) (Access(x),Splay(x),Rever(x))
#define Split(x,y) (MakeRoot(x),Access(y),Splay(y))
int Stack[LCT_SIZE+5];
struct Tree
{
int Val,Sum,Size,flag1,flag2,Rev,Father,Son[2];
}node[LCT_SIZE+5];
inline void Rotate(int x)
{
register int fa=node[x].Father,pa=node[fa].Father,d=Which(x);
!IsRoot(fa)&&(node[pa].Son[Which(fa)]=x),node[x].Father=pa,Connect(node[x].Son[d^1],fa,d),Connect(fa,x,d^1),PushUp(fa),PushUp(x);
}
inline void Splay(int x)
{
register int fa=x,Top=0;
while(Stack[++Top]=fa,!IsRoot(fa)) fa=node[fa].Father;
while(Top) PushDown(Stack[Top]),--Top;
while(!IsRoot(x)) fa=node[x].Father,!IsRoot(fa)&&(Rotate(Which(x)^Which(fa)?x:fa),0),Rotate(x);
}
inline void Access(int x) {for(register int son=0;x;x=node[son=x].Father) Splay(x),node[x].Son[1]=son,PushUp(x);}
inline int FindRoot(int x) {Access(x),Splay(x);while(node[x].Son[0]) PushDown(x),x=node[x].Son[0];return Splay(x),x;}
public:
inline void Init(int len) {for(register int i=1;i<=len;++i) node[i].Val=node[i].flag1=1;}
inline void Link(int x,int y) {MakeRoot(x),FindRoot(y)^x&&(node[x].Father=y);}
inline void Cut(int x,int y) {MakeRoot(x),!(FindRoot(y)^x)&&!(node[y].Father^x)&&!node[y].Son[0]&&(node[y].Father=node[x].Son[1]=0,PushUp(x));}
inline void Mul(int x,int y,int v) {Split(x,y),MulVal(y,v);}
inline void Add(int x,int y,int v) {Split(x,y),AddVal(y,v);}
inline int Query(int x,int y) {return Split(x,y),node[y].Sum;}
}LCT;
int main()
{
register int query_tot,i,x,y,z;register char op;
for(F.read(n),F.read(query_tot),LCT.Init(n),i=1;i<n;++i) F.read(x),F.read(y),LCT.Link(x,y);
while(query_tot--)
{
F.readc(op),F.read(x),F.read(y);
switch(op)
{
case '*':F.read(z),LCT.Mul(x,y,z);break;
case '+':F.read(z),LCT.Add(x,y,z);break;
case '-':LCT.Cut(x,y),F.read(x),F.read(y),LCT.Link(x,y);break;
case '/':F.writeln(LCT.Query(x,y));break;
}
}
return F.clear(),0;
}
【洛谷1501】[国家集训队] Tree II(LCT维护懒惰标记)的更多相关文章
- 洛谷.1501.[国家集训队]Tree II(LCT)
题目链接 日常zz被define里没取模坑 //标记下放同线段树 注意51061^2 > 2147483647,要开unsigned int //*sz[]别忘了.. #include < ...
- 洛谷 1501 [国家集训队]Tree II BZOJ 2631 Tree
[题解] 维护乘法标记和加法标记的LCT #include<cstdio> #include<algorithm> #define Mod (51061) #define N ...
- 洛谷P1501 [国家集训队]Tree II(LCT)
题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...
- 洛谷 P1501 [国家集训队]Tree II 解题报告
P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...
- 洛谷P1501 [国家集训队]Tree II(LCT,Splay)
洛谷题目传送门 关于LCT的其它问题可以参考一下我的LCT总结 一道LCT很好的练习放懒标记技巧的题目. 一开始看到又做加法又做乘法的时候我是有点mengbi的. 然后我想起了模板线段树2...... ...
- 洛谷P1501 [国家集训队]Tree II(打标记lct)
题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...
- [洛谷P1501] [国家集训队]Tree II(LCT模板)
传送门 这是一道LCT的板子题,说白了就是在LCT上支持线段树2的操作. 所以我只是来存一个板子,并不会讲什么(再说我也不会,只能误人子弟2333). 不过代码里的注释可以参考一下. Code #in ...
- 【刷题】洛谷 P1501 [国家集训队]Tree II
题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...
- [洛谷P1501][国家集训队]Tree II
题目大意:给一棵树,有四种操作: $+\;u\;v\;c:$将路径$u->v$区间加$c$ $-\;u_1\;v_1\;u_2\;v_2:$将边$u_1-v_1$切断,改成边$u_2-v_2$, ...
- 洛谷 P1501 [国家集训队]Tree II
看来这个LCT板子并没有什么问题 #include<cstdio> #include<algorithm> using namespace std; typedef long ...
随机推荐
- bzoj4435: [Cerc2015]Juice Junctions(最小割树+hash)
传送门 首先最大流等于最小割,那么可以转化为最小割树来做(不知道什么是最小割树的可以看看这题->这里) 具体的做法似乎是$hash[i][j]$表示最小割为$i$时点$j$是否与$S$连通 然后 ...
- jmeter-提取器之JSON Path PostProcessor
后置处理器添加 json path postprocessor. 用处: 当前接口响应返回的json中提取内容,作为变量可以在不同的请求中传递. 1. json path postprocessor ...
- Spring Boot整合实战Spring Security JWT权限鉴权系统
目前流行的前后端分离让Java程序员可以更加专注的做好后台业务逻辑的功能实现,提供如返回Json格式的数据接口就可以.像以前做项目的安全认证基于 session 的登录拦截,属于后端全栈式的开发的模式 ...
- POJ1141Brackets Sequence 解题报告
题目链接1 题目链接2 题目大意 给出一个括号序列,添加最少的括号使序列正确 解题思路 先将问题简单化,从求序列退化为求最小添加括号数的问题 用区间dp n³解决 f[l][r]表示使第l个到r个区间 ...
- python 3.x 安装问题及连接oracle数据库
最近有用到python去处理一些问题,发现现在3已出来,遂用直接下3.7使用 发现问题还是有一点的 1. pip 会出现ssl问题 Could not install packages due to ...
- 原生JS实现日历
这周写自己的项目发现又用到日历了,加之自己毕业之后的第一个工作中遇到的任务也是需要写个日历(组员写了,我就不用写了) 今天就来好好折腾一下日历是怎么写的. 首先,我们看看 windows 的日历.发现 ...
- Codeforces Round #565 (Div. 3) A. Divide it!
链接: https://codeforces.com/contest/1176/problem/A 题意: You are given an integer n. You can perform an ...
- LeetCode 128 Longest Consecutive Sequence 一个无序整数数组中找到最长连续序列
Given an unsorted array of integers, find the length of the longest consecutive elements sequence.Fo ...
- Java多线程与并发——线程同步
1.多线程共享数据 在多线程的操作中,多个线程有可能同时处理同一个资源,这就是多线程中的共享数据. 2.线程同步 解决数据共享问题,必须使用同步,所谓同步就是指多个线程在同一时间段内只能有一个线程执行 ...
- Python 的execfile用法
可以直接执行脚本 而import是将脚本导入另一个文件里,可以看 http://docs.python.org/2/library/functions.html 例如一个Python文件 a.py: ...