原文链接

CUDA存储器类型:

每个线程拥有自己的register and loacal memory;

每个线程块拥有一块shared memory;

所有线程都可以访问global memory;

还有,可以被所有线程访问的只读存储器:constant memory and texture memory

1、  寄存器Register

  寄存器是GPU上的高速缓存器,其基本单元是寄存器文件,每个寄存器文件大小为32bit.

  Kernel中的局部(简单类型)变量第一选择是被分配到Register中。

  特点:每个线程私有,速度快。

2、  局部存储器 local memory

  当register耗尽时,数据将被存储到local memory。如果每个线程中使用了过多的寄存器,或声明了大型结构体或数组,或编译器无法确定数组大小,线程的私有数据就会被分配到local   memory中。

  特点:每个线程私有;没有缓存,慢。

  注:在声明局部变量时,尽量使变量可以分配到register。如:

  unsigned int mt[3];

  改为: unsigned int mt0, mt1, mt2;

3、  共享存储器 shared memory

  可以被同一block中的所有线程读写

  特点:block中的线程共有;访问共享存储器几乎与register一样快.

 1 //u(i)= u(i)^2 + u(i-1)
2 //Static
3 __global__ example(float* u) {
4 int i=threadIdx.x;
5 __shared__ int tmp[4];
6 tmp[i]=u[i];
7 u[i]=tmp[i]*tmp[i]+tmp[3-i];
8 }
9
10 int main() {
11 float hostU[4] = {1, 2, 3, 4};
12 float* devU;
13 size_t size = sizeof(float)*4;
14 cudaMalloc(&devU, size);
15 cudaMemcpy(devU, hostU, size,
16 cudaMemcpyHostToDevice);
17 example<<<1,4>>>(devU, devV);
18 cudaMemcpy(hostU, devU, size,
19 cudaMemcpyDeviceToHost);
20 cudaFree(devU);
21 return 0;
22 }
23
24 //Dynamic
25 extern __shared__ int tmp[];
26
27 __global__ example(float* u) {
28 int i=threadIdx.x;
29 tmp[i]=u[i];
30 u[i]=tmp[i]*tmp[i]+tmp[3-i];
31 }
32
33 int main() {
34 float hostU[4] = {1, 2, 3, 4};
35 float* devU;
36 size_t size = sizeof(float)*4;
37 cudaMalloc(&devU, size);
38 cudaMemcpy(devU, hostU, size, cudaMemcpyHostToDevice);
39 example<<<1,4,size>>>(devU, devV);
40 cudaMemcpy(hostU, devU, size, cudaMemcpyDeviceToHost);
41 cudaFree(devU);
42 return 0;
43 }

 4、  全局存储器 global memory

  特点:所有线程都可以访问;没有缓存

//Dynamic
__global__ add4f(float* u, float* v) {
int i=threadIdx.x;
u[i]+=v[i];
}
int main() {
float hostU[4] = {1, 2, 3, 4};
float hostV[4] = {1, 2, 3, 4};
float* devU, devV;
size_t size = sizeof(float)*4;
cudaMalloc(&devU, size);
cudaMalloc(&devV, size);
cudaMemcpy(devU, hostU, size,
cudaMemcpyHostToDevice);
cudaMemcpy(devV, hostV, size,
cudaMemcpyHostToDevice);
add4f<<<1,4>>>(devU, devV);
cudaMemcpy(hostU, devU, size,
cudaMemcpyDeviceToHost);
cudaFree(devV);
cudaFree(devU);
return 0;
} //static
__device__ float devU[4];
__device__ float devV[4]; __global__ addUV() {
int i=threadIdx.x;
devU[i]+=devV[i];
} int main() {
float hostU[4] = {1, 2, 3, 4};
float hostV[4] = {1, 2, 3, 4};
size_t size = sizeof(float)*4;
cudaMemcpyToSymbol(devU, hostU, size, 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(devV, hostV, size, 0, cudaMemcpyHostToDevice);
addUV<<<1,4>>>();
cudaMemcpyFromSymbol(hostU, devU, size, 0, cudaMemcpyDeviceToHost);
return 0;
}

   5、  常数存储器constant memory

  用于存储访问频繁的只读参数

  特点:只读;有缓存;空间小(64KB)

   注:定义常数存储器时,需要将其定义在所有函数之外,作用于整个文件

1 __constant__ int devVar;
2 cudaMemcpyToSymbol(devVar, hostVar, sizeof(int), 0, cudaMemcpyHostToDevice)
3 cudaMemcpyFromSymbol(hostVar, devVar, sizeof(int), 0, cudaMemcpyDeviceToHost)

 6、  纹理存储器 texture memory

是一种只读存储器,其中的数据以一维、二维或者三维数组的形式存储在显存中。在通用计算中,其适合实现图像处理和查找,对大量数据的随机访问和非对齐访问也有良好的加速效果。

特点:具有纹理缓存,只读。

CUDA memory的更多相关文章

  1. CUDA ---- Memory Model

    Memory kernel性能高低是不能单纯的从warp的执行上来解释的.比如之前博文涉及到的,将block的维度设置为warp大小的一半会导致load efficiency降低,这个问题无法用war ...

  2. CUDA ---- Memory Access

    Memory Access Patterns 大部分device一开始从global Memory获取数据,而且,大部分GPU应用表现会被带宽限制.因此最大化应用对global Memory带宽的使用 ...

  3. 并行程序设计---cuda memory

    CUDA存储器模型: GPU片内:register,shared memory: host 内存: host memory, pinned memory. 板载显存:local memory,cons ...

  4. cuda培训素材

    http://www.geforce.cn/hardware/desktop-gpus/geforce-gtx-480/architecture http://cache.baiducontent.c ...

  5. 详解第一个CUDA程序kernel.cu

    CUDA是一个基于NVIDIA GPU的并行计算平台和编程模型,通过调用CUDA提供的API,可以开发高性能的并行程序.CUDA安装好之后,会自动配置好VS编译环境,按照UCDA模板新建一个工程&qu ...

  6. 2.2CUDA-Memory(存储)和bank-conflict

    在CUDA基本概念介绍有简单介绍CUDA memory.这里详细介绍: 每一个线程拥有自己的私有存储器,每一个线程块拥有一块共享存储器(Shared memory):最后,grid中所有的线程都可以访 ...

  7. [源码解析] PyTorch 流水线并行实现 (2)--如何划分模型

    [源码解析] PyTorch 流水线并行实现 (2)--如何划分模型 目录 [源码解析] PyTorch 流水线并行实现 (2)--如何划分模型 0x00 摘要 0x01 问题 0x01 自动平衡 1 ...

  8. 如何设计一个高内聚低耦合的模块——MegEngine 中自定义 Op 系统的实践经验

    作者:褚超群 | 旷视科技 MegEngine 架构师 背景介绍 在算法研究的过程中,算法同学们可能经常会尝试定义各种新的神经网络层(neural network layer),比如 Layer No ...

  9. TensorRT 开始

    TensorRT 是 NVIDIA 自家的高性能推理库,其 Getting Started 列出了各资料入口,如下: 本文基于当前的 TensorRT 8.2 版本,将一步步介绍从安装,直到加速推理自 ...

随机推荐

  1. app的deviceName,apppackage,appactivity获取

    deviceName值的获取: deviceName=192.168.137.150:5555 ip:手机ip地址,端口,通过如下命令开启 # adb devices //查看当前连接设备 # adb ...

  2. jndi理解

    java中很多这些接口规范,jndi就是其中一个,而下面那些包就是jndi接口的提供商程序实现包,他们都是遵循jndi规范的. 主要接口功能是:添加命名与对象的映射到jndi树中,客户能快速查找并使用 ...

  3. 安装rails遇到的问题

    1 要安装js运行环境,例如Nodejs,如果使用nvm记得,安装完执行nvm use '版本号' 2 或者在Gemfile文件中加入: gem 'execjs'gem 'therubyracer'然 ...

  4. DedeCms中Channel用typeid无效

    DedeCms中channel 用typeid调用无法达目的吗?请换成type试试! {dede:channel type='son' typeid='19' row='1'} <a href= ...

  5. pta08-图7 公路村村通 (30分)

    08-图7 公路村村通   (30分) 现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本. 输入格式: 输入数据包括城镇数目正整数N ...

  6. 开发安全的 API 所需要核对的清单

    开发安全的 API 所需要核对的清单 以下是当你在设计, 测试以及发布你的 API 的时候所需要核对的重要安全措施. 身份认证 不要使用 Basic Auth 使用标准的认证协议 (如 JWT, OA ...

  7. REST API 自动化测试 利器Rest Assured(API接口自动化测试框架体系)

    现在,越来越多的 Web 应用转向了 RESTful 的架构,很多产品和应用暴露给用户的往往就是一组 REST API,这样有一个好处,用户可以根据需要,调用不同的 API,整合出自己的应用出来.从这 ...

  8. Java基础入门 - 标识符及其命名规范

    类名.变量名.方法名都称为标识符 标识符命名规范: 由字母(A-Z或a-z).数字.下划线(_)和美元符($)中的一种或多种组合而成 不可以数字开头 大小写敏感 关键字不能用作标识符 合法标识符如:D ...

  9. Java之美[从菜鸟到高手演变]之智力题【史上最全】 (转)

    原文地址:http://blog.csdn.net/zhangerqing/article/details/8138296 PS:在一次偶然的机会中,发现了这篇文章.希望大家能开动脑经. 智力题,每个 ...

  10. python面试题——网络编程和并发

    1.简述 OSI 七层协议. 物理层(电信号.比特流) 基于电器特性发送高低电压(电信号) RJ45.IEEE802.3 数据链路层(数据帧) 定义了电信号的分组方式,分组方式后来形成了统一的标准,即 ...