P1903 [国家集训队]数颜色

题目描述

墨墨购买了一套\(N\)支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问。墨墨会向你发布如下指令:

1、Q L R代表询问你从第\(L\)支画笔到第\(R\)支画笔中共有几种不同颜色的画笔。

2、 R P Col 把第\(P\)支画笔替换为颜色\(Col\)。

为了满足墨墨的要求,你知道你需要干什么了吗?

输入输出格式

输入格式:

第1行两个整数\(N\),\(M\),分别代表初始画笔的数量以及墨墨会做的事情的个数。

第2行\(N\)个整数,分别代表初始画笔排中第i支画笔的颜色。

第3行到第2+M行,每行分别代表墨墨会做的一件事情,格式见题干部分。

输出格式:

对于每一个Query的询问,你需要在对应的行中给出一个数字,代表第L支画笔到第R支画笔中共有几种不同颜色的画笔。

说明

对于100%的数据,N≤50000,M≤50000,所有的输入数据中出现的所有整数均大于等于1且不超过10^6。


正解是待修莫队,不过树套树复杂度更优秀(常数就不一定了),就拿树套树过了这个题

把一个颜色的笔放到一个set里,以位置为关键字,同时更新\(pre\)数组,代表前一个相同颜色的位置(特别的,如果没有,为0)

先不考虑修改,我们发现询问\([l,r]\)有多少不同颜色等价于询问有多少个\(pre\)数组小于\(l\),我们可以拿权值线段树解决这个问题

然后对于修改,我们只需要在外面套上树状数组就可以啦


Code:

#include <cstdio>
#include <algorithm>
#include <set>
#define ls ch[now][0]
#define rs ch[now][1]
using namespace std;
const int N=2e5+10;
int ch[N*18][2],sum[N*18],root[N],tot;
int a[N],b[N],pre[N],n,m,k;
void updata(int now){sum[now]=sum[ls]+sum[rs];}
void change(int &now,int l,int r,int pos,int delta)
{
if(!now) now=++tot;
if(l==r) {sum[now]+=delta;return;}
int mid=l+r>>1;
if(pos<=mid) change(ls,l,mid,pos,delta);
else change(rs,mid+1,r,pos,delta);
updata(now);
}
int query(int now,int l,int r,int pos)
{
if(!now||l==r) return 0;
int mid=l+r>>1;
if(pos<=mid) return query(ls,l,mid,pos);
else return sum[ls]+query(rs,mid+1,r,pos);
}
void modify(int x,int pos,int delta)
{
while(x<=n) change(root[x],0,n-1,pos,delta),x+=x&-x;
}
int ask(int x,int rk)
{
int ans=0;
while(x)
ans+=query(root[x],0,n-1,rk),x-=x&-x;
return ans;
}
struct node{int op,x,y;}opt[N];
set <int > rb[N];
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),b[i]=a[i];
m=n;char c[3];
for(int i=1;i<=k;i++)
{
scanf("%s%d%d",c,&opt[i].x,&opt[i].y);
opt[i].op=(c[0]=='R');
if(opt[i].op) a[++m]=opt[i].y;
}
sort(a+1,a+1+m);
m=unique(a+1,a+1+m)-a-1;
for(int i=1;i<=n;i++) b[i]=lower_bound(a+1,a+1+m,b[i])-a;
for(int i=1;i<=k;i++) if(opt[i].op) opt[i].y=lower_bound(a+1,a+1+m,opt[i].y)-a;
for(int i=1;i<=n;i++)
{
if(!rb[b[i]].empty())
{
set <int>::iterator it=rb[b[i]].end();
it--;
pre[i]=*it;
}
rb[b[i]].insert(i);
}
for(int i=1;i<=n;i++)
for(int j=i-(i&-i)+1;j<=i;j++)
change(root[i],0,n-1,pre[j],1);
for(int i=1;i<=k;i++)
{
if(opt[i].op)
{
int co=opt[i].y,pos=opt[i].x,pr;
set <int >::iterator it=rb[b[pos]].find(pos);//找到颜色位置
it++;
if(it!=rb[b[pos]].end())//改它的后继
{
modify(*it,pos,-1);
modify(*it,pre[*it]=pre[pos],1);
}
rb[b[pos]].erase(pos);//删掉
rb[b[pos]=co].insert(pos);//加入且改自己颜色
it=rb[co].find(pos);
if(it!=rb[co].begin()) it--,pr=*it,it++;
else pr=0;//找到pre
modify(pos,pre[pos],-1);//改自己pre
modify(pos,pre[pos]=pr,1);
it++;
if(it!=rb[b[pos]].end())//寻找后面
{
modify(*it,pre[*it],-1);
modify(*it,pre[*it]=pos,1);
}
}
else
printf("%d\n",ask(opt[i].y,opt[i].x)-opt[i].x+1);
}
return 0;
}

2018.9.4

洛谷 P1903 [国家集训队]数颜色 解题报告的更多相关文章

  1. BZOJ2120/洛谷P1903 [国家集训队] 数颜色 [带修改莫队]

    BZOJ传送门:洛谷传送门 数颜色 题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R ...

  2. ●洛谷P1903 [国家集训队]数颜色

    题链: https://www.luogu.org/problemnew/show/P1903题解: 序列带修莫队, 推荐博客https://www.cnblogs.com/Paul-Guderian ...

  3. 洛谷 P1903 [国家集训队]数颜色 / 维护队列

    墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. \(Q\) \(L\) \(R\) 代表询问你从第L支画笔到第R支画笔中共有几种不同 ...

  4. [洛谷P1903][国家集训队]数颜色

    题目大意:有$n$支画笔,有两个操作 $Q\;l\;r:$询问$[l,r]$中有几种颜色 $R\;p\;Col:$把第$p$支画笔的颜色改成$Col$ 题解:带修莫队,分为$n^{\frac{1}{3 ...

  5. 洛谷P1903 [国家集训队]数颜色 / 维护队列 ( 带 修 )

    题意:有两种操作: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2. R P Col 把第P支画笔替换为颜色Col. 对每个1操作 输出答案: 带修莫队 模板题 (加 ...

  6. 洛谷 P1903 [国家集训队]数颜色 / 维护队列 带修莫队

    题目描述 墨墨购买了一套\(N\)支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: \(1\). \(Q\) \(L\) \(R\)代表询问你从第\(L\) ...

  7. 洛谷 P1903 [国家集训队]数颜色

    题意简述 给定一个数列,支持两个操作 1.询问l~r有多少不同数字 2.修改某个数字 题解思路 带修莫队 如果修改多了,撤销修改 如果修改少了,进行修改 代码 #include <cmath&g ...

  8. 洛谷 P1407 [国家集训队]稳定婚姻 解题报告

    P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...

  9. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

随机推荐

  1. Python学习之购物车

    实现功能: 程序启动,提示用户输入用户名和密码,程序读取余额文件last_salary.txt内容(文件不存在则自动创建),若文件内容为空则提示“首次登录,请输入工资”: 用户可以输入商品编号进行购买 ...

  2. C++ 基础 初始化列表

    当一个类组合了其他类,或者使用了 const 成员,就要用 初始化列表. Class A {...}; Class B {...}; Class C { private: A a; B b; int ...

  3. python基础之继承组合应用、对象序列化和反序列化,选课系统综合示例

    继承+组合应用示例 1 class Date: #定义时间类,包含姓名.年.月.日,用于返回生日 2 def __init__(self,name,year,mon,day): 3 self.name ...

  4. java实时监听日志写入kafka

    目的 实时监听某目录下的日志文件,如有新文件切换到新文件,并同步写入kafka,同时记录日志文件的行位置,以应对进程异常退出,能从上次的文件位置开始读取(考虑到效率,这里是每100条记一次,可调整) ...

  5. Oozie 安装及 examples app 的使用

    参考文档 一.Building OOzie 特别注意的是修改Pom.xml文件中的版本与本机中安装的版本相同 二. install Oozie 1.为 hadoop 添加 Oozie 的代理用户,添加 ...

  6. P2344 奶牛抗议

    P2344 奶牛抗议 题目背景 Generic Cow Protests, 2011 Feb 题目描述 约翰家的N 头奶牛正在排队游行抗议.一些奶牛情绪激动,约翰测算下来,排在第i 位的奶牛的理智度为 ...

  7. (1)strchr

    const char * strchr ( const char * str, int character ); char * strchr ( char * str, int character ) ...

  8. linux下vi的复制,黏贴,删除,撤销,跳转等命令-费元星

    前言    在嵌入式linux开发中,进行需要修改一下配置文件之类的,必须使用vi,因此,熟悉 vi 的一些基本操作,有助于提高工作效率. 一,模式vi编辑器有3种模式:命令模式.输入模式.末行模式. ...

  9. linux 广播

    广播是一台主机向局域网内的所有主机发送数据.这时,同一网段的所有主机都能接收到数据.发送广播包的步骤大致如下: (1)确定一个发送广播的接口,如eth0 (2)确定广播的地址,通过ioctl函数,请求 ...

  10. erlang连接mysql [转]

    转自: http://blog.csdn.net/flyinmind/article/details/7740540 项目中用到erlang,同时也用到mysql.惯例,google. 但是,按照网上 ...