[洛谷P3978][TJOI2015]概率论
题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少?
题解:令$f_n$表示$n$个节点的二叉树的个数,$g_n$表示这$f_n$棵二叉树的叶子节点个数和。
打(ti)表(jie)发现:$g_n=n f_{n-1}$
证明:而每棵$n-1$个点的二叉树恰好有$n$个位置可以悬挂一个新的叶子,所以每棵$n-1$个点的二叉树被扩展了$n$次。发现会算重复,但是对于一个有$k$个叶子节点的二叉树,就会被重算$k+1$次,刚好就是叶子节点的个数,所以$g_n=n f_{n-1}$
$$
\dfrac{g_n}{f_n}=\dfrac{nf_{n-1}}{f_n}\\
\begin{align*}
f_n&=\sum\limits_{i=0}^{n-1}f_if_{n-i-1}\\
&=\dfrac{\binom{2n}n}{n+1}\\
&(即卡特兰数)\\
\end{align*}\\
g_n=\dfrac{n(n+1)}{2(2n-1)}
$$
更正常的生成函数证明方法
卡点:未开$long\;long$
C++ Code:
#include <cstdio>
long long n;
int main(){
scanf("%lld", &n);
printf("%.10lf\n", n * (n + 1) / 2.0 / (2.0 * n - 1.0));
return 0;
}
[洛谷P3978][TJOI2015]概率论的更多相关文章
- 洛谷P3973 - [TJOI2015]线性代数
Portal Description 给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\).求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A ...
- 洛谷 P3975 [TJOI2015]弦论 解题报告
P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...
- P3978 [TJOI2015]概率论
\(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...
- luogu P3978 [TJOI2015]概率论
看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k ...
- [洛谷P3975][TJOI2015]弦论
题目大意:求一个字符串的第$k$大字串,$t$表示长得一样位置不同的字串是否算多个 题解:$SAM$,先求出每个位置可以到达多少个字串($Right$数组),然后在转移图上$DP$,若$t=1$,初始 ...
- 并不对劲的bzoj4001:loj2105:p3978:[TJOI2015]概率论
题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉 ...
- 洛谷3973 TJOI2015线性代数(最小割+思维)
感觉要做出来这个题,需要一定的线代芝士 首先,我们来观察这个柿子. 我们将\(B\)的权值看作是收益的话,\(C\)的权值就是花费. 根据矩阵乘法的原理,只有当\(a[i]和a[j]\)都为\(1\) ...
- 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论
题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...
- 【洛谷P3973】[TJOI2015]线性代数(最小割)
洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^ ...
随机推荐
- NodeJS基础入门
1.前端最主流的JavaScript运行环境 1>Node.js是一个基于Chrome V8引擎的JavaScript运行环境. 2>Node.js使用了一个事件驱动.非阻塞式I/O的模型 ...
- 关于var和ES6中的let,const的理解
var的作用就不多说了,下面说说var的缺点: 1.var可以重复声明 var a = 1; var a = 5; console.log(a); //5 不会报错 在像这些这些严谨的语言来说,一般是 ...
- 【例题收藏】◇例题·III◇ 木と整数 / Integers on a Tree
◇例题·III◇ 木と整数 / Integers on a Tree 只需要一个美妙的转换,这道题就会变得无比美妙…… 来源:+AtCoder 2148(ARC-063 E)+ ◆ 题目大意 给定一棵 ...
- 【牛客 错题集】Linux系统方面错题合集
前言:牛客Linux322道全部刷完,有些题目较老,甚至考核5系统,现在7都出来了几年了 = = 还有些题目解析的很好部分也摘录了进来.很多涉及嵌入式开发的选择题同样的摘录的作为了解使用 ------ ...
- JS之执行上下文
执行上下文(execution context),是JS中的一个很重要的概念.它对于我们理解函数定义,执行时都做了什么有着很大的意义.理解它我们才能明白我们常说的函数声明提升,作用域链,闭包等原理. ...
- js延迟加载的方式有哪些?
共有:defer和async.动态创建DOM方式(用得最多).按需异步载入js defer属性:(页面load后执行) HTML 4.01 为 <script>标签定义了 defer属性. ...
- Elasticsearch和Head插件安装
环境: CentOS7 Elasticsearch-6.3.2 JDK8 准备: JDK8 下载地址:http://www.oracle.com/technetwork/java/javase/do ...
- UIView控件 概况
一.UIKit结构图 ------------------------------------------------------------------------------- @interfac ...
- C语言函数篇(一)函数的组成
函数的组成: 函数名 输入参数 返回值 返回值 函数名 (输入参数){ 执行体 } 用指针保存函数: int func(int a, int b, char c){ } --> int (*fu ...
- POJ 1854 贪心(分治)
Evil Straw Warts Live Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1144 Accepted: ...