一.有关笔记:

1..吴恩达机器学习笔记(二) —— Logistic回归

2.吴恩达机器学习笔记(十一) —— Large Scale Machine Learning

二.Python源码(不带正则项):

 # coding:utf-8

 '''
Created on Oct 27, 2010
Logistic Regression Working Module
@author: Peter
'''
from numpy import * def sigmoid(inX):
return 1.0 / (1 + exp(-inX)) def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn) # convert to NumPy matrix
labelMat = mat(classLabels).transpose() # convert to NumPy matrix
m, n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = ones((n, 1))
for k in range(maxCycles): # heavy on matrix operations
h = sigmoid(dataMatrix * weights) # matrix mult
error = (labelMat - h) # vector subtraction
weights = weights + alpha * dataMatrix.transpose() * error # matrix mult
return weights def stocGradAscent0(dataMatrix, classLabels,numIter=150):
m, n = shape(dataMatrix)
alpha = 0.01
weights = ones(n) # initialize to all ones
for j in range(numIter):
for i in range(m):
h = sigmoid(sum(dataMatrix[i] * weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m, n = shape(dataMatrix)
weights = ones(n) # initialize to all ones
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4 / (1.0 + j + i) + 0.0001 # apha decreases with iteration, does not
randIndex = int(random.uniform(0, len(dataIndex))) # go to 0 because of the constant
h = sigmoid(sum(dataMatrix[randIndex] * weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del (dataIndex[randIndex])
return weights def classifyVector(inX, weights):
prob = sigmoid(sum(inX * weights))
if prob > 0.5:
return 1.0
else:
return 0.0 def colicTest():
frTrain = open('horseColicTraining.txt')
frTest = open('horseColicTest.txt')
trainingSet = []
trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(array(trainingSet), trainingLabels,500)
errorCount = 0; numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr), trainWeights)) != int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount) / numTestVec)
print "the error rate of this test is: %f" % errorRate
return errorRate def multiTest():
numTests = 10; errorSum = 0.0
for k in range(numTests):
errorSum += colicTest()
print "after %d iterations the average error rate is: %f" % (numTests, errorSum / float(numTests)) if __name__=="__main__":
multiTest()

三.Batch gradient descent、Stochastic gradient descent、Mini-batch gradient descent 的性能比较

1.Batch gradient descent

 def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn) # convert to NumPy matrix
labelMat = mat(classLabels).transpose() # convert to NumPy matrix
m, n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = ones((n, 1))
for k in range(maxCycles): # heavy on matrix operations
h = sigmoid(dataMatrix * weights) # matrix mult
error = (labelMat - h) # vector subtraction
weights = weights + alpha * dataMatrix.transpose() * error # matrix mult
return weights

其运行结果:

错误率为:28.4%

2.Stochastic gradient descent

 def stocGradAscent0(dataMatrix, classLabels,numIter=150):
m, n = shape(dataMatrix)
alpha = 0.01
weights = ones(n) # initialize to all ones
for j in range(numIter):
for i in range(m):
h = sigmoid(sum(dataMatrix[i] * weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights

迭代次数为150时,错误率为:46.3%

迭代次数为500时,错误率为:32.8%

迭代次数为800时,错误率为:38.8%

3.Mini-batch gradient descent

 def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m, n = shape(dataMatrix)
weights = ones(n) # initialize to all ones
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4 / (1.0 + j + i) + 0.0001 # apha decreases with iteration, does not
randIndex = int(random.uniform(0, len(dataIndex))) # go to 0 because of the constant
h = sigmoid(sum(dataMatrix[randIndex] * weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del (dataIndex[randIndex])
return weights

迭代次数为150时,错误率为:37.8%

迭代次数为500时,错误率为:35.2%

迭代次数为800时,错误率为:37.3%

4.综上:

1.在训练数据集较小且特征较少的时候,使用Batch gradient descent的效果是最好的。但如果不能满足这个条件,则可使用Mini-batch gradient descent,并设置合适的迭代次数。

2.对于Stochastic gradient descent 和 Mini-batch gradient descent 而言,并非迭代次数越多效果越好。不知为何?

《机器学习实战》学习笔记第五章 —— Logistic回归的更多相关文章

  1. Programming Entity Framework-dbContext 学习笔记第五章

    ### Programming Entity Framework-dbContext 学习笔记 第五章 将图表添加到Context中的方式及容易出现的错误 方法 结果 警告 Add Root 图标中的 ...

  2. [HeadFrist-HTMLCSS学习笔记]第五章认识媒体:给网页添加图像

    [HeadFrist-HTMLCSS学习笔记]第五章认识媒体:给网页添加图像 干货 JPEG.PNG.GIF有何不同 JPEG适合连续色调图像,如照片:不支持透明度:不支持动画:有损格式 PNG适合单 ...

  3. 第五章 Logistic回归

    第五章 Logistic回归 假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归. 为了实现Logistic回归分类器,我们可以在每个特征上都乘以一 ...

  4. 《Spring实战》学习笔记-第五章:构建Spring web应用

    之前一直在看<Spring实战>第三版,看到第五章时发现很多东西已经过时被废弃了,于是现在开始读<Spring实战>第四版了,章节安排与之前不同了,里面应用的应该是最新的技术. ...

  5. 【马克-to-win】学习笔记—— 第五章 异常Exception

    第五章 异常Exception [学习笔记] [参考:JDK中文(类 Exception)] java.lang.Object java.lang.Throwable java.lang.Except ...

  6. 【机器学习实战学习笔记(2-2)】决策树python3.6实现及简单应用

    文章目录 1.ID3及C4.5算法基础 1.1 计算香农熵 1.2 按照给定特征划分数据集 1.3 选择最优特征 1.4 多数表决实现 2.基于ID3.C4.5生成算法创建决策树 3.使用决策树进行分 ...

  7. 【机器学习实战学习笔记(1-1)】k-近邻算法原理及python实现

    笔者本人是个初入机器学习的小白,主要是想把学习过程中的大概知识和自己的一些经验写下来跟大家分享,也可以加强自己的记忆,有不足的地方还望小伙伴们批评指正,点赞评论走起来~ 文章目录 1.k-近邻算法概述 ...

  8. opencv图像处理基础 (《OpenCV编程入门--毛星云》学习笔记一---五章)

    #include <QCoreApplication> #include <opencv2/core/core.hpp> #include <opencv2/highgu ...

  9. 学习笔记 第五章 使用CSS美化网页文本

    第五章   使用CSS美化网页文本 学习重点 定义字体类型.大小.颜色等字体样式: 设计文本样式,如对齐.行高.间距等: 能够灵活设计美观.实用的网页正文版式. 5.1 字体样式 5.1.1 定义字体 ...

随机推荐

  1. HDU 4738 Caocao&#39;s Bridges(找割边)

    HDU 4738 Caocao's Bridges 题目链接 注意几个坑,可能重边,至少要派一个人去炸,没有连通的时候就不用炸了 代码: #include <cstdio> #includ ...

  2. EasyUI datagrid border处理,加边框,去边框,都能够

    以下是EasyUI 官网上处理datagrid border的demo: 主要是这句: $('#dg').datagrid('getPanel').removeClass('lines-both li ...

  3. inotify+rsync

    backup_to_rsync.sh #!/bin/bash #source function library . /etc/init.d/functions rsync_host=rsync.eti ...

  4. Linux 查看tomcat占用的端口号

    第一步:先查看tomcat占用的进程号 ps -ef|grep tomcat 第二步:根据进程号,查看进程所占用的端口 netstat -apn 由此得知,tomcat的进程号是21845,并得到端口 ...

  5. 笔试真题解析 ALBB-2015 系统project师研发笔试题

    4)在小端序的机器中,假设 union X {     int x;     char y[4]; }; 假设 X a; a.x=0x11223344;//16进制 则:() y[0]=11 y[1] ...

  6. mysql解压版安装和卸载

    问题1:发生系统错误 5. 解决:使用管理员身份安装即可 问题2:发生系统错误 2. 解决:cd C:\Program Files\MySQL\MySQL Server 5.6\bin 进入mysql ...

  7. 【Python学习】之yagmail库实现发送邮件

    上代码: import yagmail sendmail = 'xxx@126.com' sendpswd = 'xxx' receivemail = 'xxx@qq.com' # 连接邮箱服务器 y ...

  8. JSP 开发环境搭建

    JSP 开发环境搭建 JSP开发环境是您用来开发.测试和运行JSP程序的地方. 本节将会带您搭建JSP开发环境,具体包括以下几个步骤. 配置Java开发工具(JDK) 这一步涉及Java SDK的下载 ...

  9. /bin/sh^M:bad interpreter: No such file or directory

    bash脚本:/bin/sh^M:bad interpreter: No such file or directory   dos2unix 实际上就是把文本文件中面的^M删除 用SHELL 写了一个 ...

  10. ios 深入讲解iOS键盘一:控制键盘隐藏显示

    在iOS的开发中,我们一般使用UITextField.UITextView处理文字输入等操作,大部分情况下我们只需要一两行代码去手动管理键盘的显示隐藏:让UITextField或UITextView成 ...