最短路

很早以前做的了

数据范围太大,不能直接算

mn=min(a[i])

算出d[i]表示sum%mn=i最小能构成的数,这个用最短路就行了,然后计算d[i],d[i]+mn的个数统计答案

#include<bits/stdc++.h>
using namespace std;
const int N = 6e6 + ;
int n;
long long l, r, mn = 0x3f3f3f3f;
long long a[], d[N];
int main()
{
scanf("%d%lld%lld", &n, &l, &r);
for(int i = ; i <= n; ++i)
{
scanf("%d", &a[i]);
mn = min(mn, a[i]);
}
priority_queue<pair<long long, int>, vector<pair<long long, int> >, greater<pair<long long, int> > > q;
memset(d, 0x3f3f, sizeof(d));
d[] = ;
q.push({, });
while(!q.empty())
{
pair<int, int> o = q.top();
q.pop();
int u = o.second;
if(d[u] < o.first) continue;
for(int i = ; i <= n; ++i)
{
int v = (u + a[i]) % mn;
if(d[v] <= d[u] + a[i]) continue;
d[v] = d[u] + a[i];
q.push({d[v], v});
}
}
--l;
long long ans = ;
for(int i = ; i < mn; ++i)
{
if(d[i] <= r) ans += (r - d[i]) / mn + ;
if(d[i] <= l) ans -= (l - d[i]) / mn + ;
}
printf("%lld\n", ans);
return ;
}

bzoj2118的更多相关文章

  1. 【bzoj2118】 墨墨的等式

    http://www.lydsy.com/JudgeOnline/problem.php?id=2118 (题目链接) 题意 给出${B}$的取值范围${[Bmin,Bmax]}$,求方程${a_{1 ...

  2. 【BZOJ2118】墨墨的等式(最短路)

    [BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...

  3. 【BZOJ2118】墨墨的等式 最短路

    [BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...

  4. BZOJ2118 墨墨的等式 【最短路】

    题目链接 BZOJ2118 题解 orz竟然是最短路 我们去\(0\)后取出最小的\(a[i]\),记为\(p\),然后考虑模\(p\)下的\(B\) 一个数\(i\)能被凑出,那么\(i + p\) ...

  5. 【bzoj2118&洛谷P2371】墨墨的等式(最短路神仙题)

    题目传送门:bzoj2118 洛谷P2371 这道题看了题解后才会的..果然是国家集训队的神仙题,思维独特. 首先若方程$ \sum_{i=1}^{n}a_ix_i=k $有非负整数解,那么显然对于每 ...

  6. BZOJ2118墨墨的等式[数论 最短路建模]

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discus ...

  7. Bzoj2118 墨墨的等式

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1488  Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...

  8. [bzoj2118]墨墨的等式【dijk+堆】

    10/30的update:如果是冲着dijk的板子来的,建议看多校联考contest中第二场day2的T2,那边的写法比较优秀... --------------------------------- ...

  9. bzoj2118(加法原理)(墨墨的等式)

    题目大意:给定n个物品,每个物品有一个非负价值,问[L,R]区间内有多少价值可以被凑出来. 题意网上一大片,具体求解过程是利用了加法原理,将各个模数拥有的个数之和相加. 就是说随机取一个数a[k],那 ...

  10. 2018.09.27 bzoj2118: 墨墨的等式(最短路+背包)

    传送门 好题啊. 首先找到最小的一个非零系数记做a1a_1a1​,然后如果WWW modmodmod a1=W′a_1=W'a1​=W′ modmodmod a1a_1a1​,且WWW是方程的一个可行 ...

随机推荐

  1. vue 计算属性和监听器

    一.计算属性 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.在模板中放入太多的逻辑会让模板过重且难以维护.例如: <div> {{ message.split('').rev ...

  2. 使用parted 对大容量盘进行分区

    MBR分区表:(MBR含义:主引导记录) 所支持的最大卷:2T (T; terabytes,1TB=1024GB) 对分区的设限:最多4个主分区或3个主分区加一个扩展分区. GPT分区表:(GPT含义 ...

  3. lazyload.js参数说明

    lazyload.js是jQuery的一个插件,可以用来实现图片异步加载. lazyload插件如何添加参数: $("img").lazyload({ //参数添加到此位置,建议一 ...

  4. NVM安装配置

    http://www.kancloud.cn/summer/nodejs-install/71975 配置源 http://www.cnblogs.com/kaiye/p/4937191.html 安 ...

  5. socket编程详解

    http://www.cnblogs.com/skynet/archive/2010/12/12/1903949.html http://blog.csdn.net/hguisu/article/de ...

  6. spring项目命名

    groupId 一般分为多个段,最简单的分两段,第一段为域,第二段为公司名称.域又分为org.com.cn等等许多, 举个apache公司的tomcat项目例子:这个项目的groupId是org.ap ...

  7. etcd -> Highly-avaliable key value store for shared configuration and service discovery

    The name "etcd" originated from two ideas, the unix "/etc" folder and "d&qu ...

  8. Vim 分隔窗口

    一,分隔窗口: 打开文件时在:命令模型时下面输入:split 将分隔为上下2个窗口:默认上窗口为活动窗口,可以通过CTRL-w来来回切换窗口; :close 为关闭窗口,最后一个窗口不能关闭: :on ...

  9. 算法(Algorithms)第4版 练习 1.5.10

    Yes, but it could increase the tree height, so the performance guarantee would be invalid.

  10. 也来谈幂等和CAS

    什么是幂等? 一个方法,不管你执行多少次,保证执行的结果总是相同的.这种方法或者服务就是幂等的. 什么是CAS? CAS是Compare And Set的缩写,顾名思义,就是先比较再设置,这种方式避免 ...