Diophantus of Alexandria

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2269    Accepted Submission(s): 851

Problem Description
Diophantus
of Alexandria was an egypt mathematician living in Alexandria. He was
one of the first mathematicians to study equations where variables were
restricted to integral values. In honor of him, these equations are
commonly called diophantine equations. One of the most famous
diophantine equation is x^n + y^n = z^n. Fermat suggested that for n
> 2, there are no solutions with positive integral values for x, y
and z. A proof of this theorem (called Fermat's last theorem) was found
only recently by Andrew Wiles.

Consider the following diophantine equation:

1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)

Diophantus
is interested in the following question: for a given n, how many
distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1)
have? For example, for n = 4, there are exactly three distinct
solutions:

1 / 5 + 1 / 20 = 1 / 4
1 / 6 + 1 / 12 = 1 / 4
1 / 8 + 1 / 8 = 1 / 4

Clearly,
enumerating these solutions can become tedious for bigger values of n.
Can you help Diophantus compute the number of distinct solutions for big
values of n quickly?

 
Input
The
first line contains the number of scenarios. Each scenario consists of
one line containing a single number n (1 ≤ n ≤ 10^9).
 
Output
The
output for every scenario begins with a line containing "Scenario #i:",
where i is the number of the scenario starting at 1. Next, print a
single line with the number of distinct solutions of equation (1) for
the given value of n. Terminate each scenario with a blank line.
 
Sample Input
2
4
1260
 
Sample Output
Scenario #1:
3

 
Scenario #2:
113
 
 
Source
 
Recommend
JGShining   |   We have carefully selected several similar problems for you:  1788 1905 3049 1576 1402
 
这题数论求的是 数的因子个数,设数为n,其可表示为
n=p1^r1 * p2^r2 * . . . * pn^rn
其中,p为素数,且可知其n的因子个数
k=(r1+1)*(r2+2)*...*(rn+1);
 
又由题可得,
1/x+y/1=1/n  ==> 
x>n && y>n   ==> 
xy=nx+ny,设y=n+k,x=n*(n+k)/k,即所求为n*n的因子个数
k=(2*r1+1)*(2*r2+2)*...*(2*rn+1);
 
注意结果要求多少对,故ans=k/2+1;
 //140MS    200K    622 B    G++
#include<stdio.h>
#include<math.h>
long long solve(int n)
{
long long ans=;
int i;
int m=(int)sqrt(n+0.5);
for(i=;i<=m;i++){
int ret=;
if(n%i==){
n/=i;
while(n%i==){
n/=i;ret++;
}
ans*=(*ret+);
}
if(n<i) break;
}
if(n>) ans*=;
return ans;
}
int main(void)
{
int n;
int cas=,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("Scenario #%d:\n%lld\n",cas++,solve(n)/+);
printf("\n");
}
return ;
}
 

hdu 1299 Diophantus of Alexandria (数论)的更多相关文章

  1. hdu 1299 Diophantus of Alexandria(数学题)

    题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...

  2. hdu 1299 Diophantus of Alexandria

    1/x + 1/y = 1/n 1<=n<=10^9给你 n 求符合要求的x,y有多少对 x<=y// 首先 x>n 那么设 x=n+m 那么 1/y= 1/n - 1/(n+ ...

  3. hdoj 1299 Diophantus of Alexandria

    hdoj 1299 Diophantus of Alexandria 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1299 题意:求 1/x + 1/y ...

  4. 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

  5. HDU 1299 基础数论 分解

    给一个数n问有多少种x,y的组合使$\frac{1}{x}+\frac{1}{y}=\frac{1}{n},x<=y$满足,设y = k + n,代入得到$x = \frac{n^2}{k} + ...

  6. hdu Diophantus of Alexandria(素数的筛选+分解)

    Description Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of ...

  7. Hdu 1299

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  8. Diophantus of Alexandria[HDU1299]

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...

  9. Diophantus of Alexandria

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

随机推荐

  1. SpringMVC工作环境搭建 配置文件

    web.xml配置 在服务器端容器启动之前加载配置文件的顺序:context-param>listener>filter>servlet //容器配置application上下文的时 ...

  2. pip China

    建个文件 ~/.pip/pip.conf, 内容如下 [global] index-url = http://b.pypi.python.org/simple [install] use-mirror ...

  3. [转载]tlb、tlh和tli文件的关系

    tlb.tlh和tli文件的关系 tlb文件:com类型库文件.在需要使用对应com类的模块里,“#import ...*.tlb”使用之. tlh.tli文件:他们是vc++编译器解析tlb文件生成 ...

  4. 64位系统装oracle(ora-12154 )

    装了n次的oracle,昨下午装服务器的oracle,结果遇到了一个问题,让我百思不得其解,但最终在大家的帮助下终于解决了. 我装的服务器是windows server 2007 64位的,装完ora ...

  5. android layout布局属性

    参考:http://blog.csdn.net/msmile_my/article/details/9018775 第一类:属性值 true或者 false           android:lay ...

  6. mongoDB学习笔记:了解与安装

    初次使用mongoDB是在2013年,项目组为了新产品的研发,使用了mongoDB,作为项目组的一名测试员,也就跟着学起来了. 1.了解mongoDB Mongo DB ,是目前在IT行业非常流行的一 ...

  7. Cacti修改采集精度为1分钟

    前言: 基础知识:建议先了解一下 rrdtool 及 rrd 数据库的工作原理,参考阅读<rrdtool学习笔记> cacti主要使用了rrdtool这个工具来绘图,所以看上去比zabbi ...

  8. C#遍历字典

    C#遍历字典 foreach (KeyValuePair<int, Color> kvp in dic) lst.Add(kvp.Value);

  9. 输入m乘法表

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 29. Xshell连接Linux下Oracle无法回退的解决办法

    使用Xshell 连接远程Linux 数据库服务器,当切换到sqlplus 控制台时,输入错误字符的时候,使用回退键修改时,显示^H. 解决方法:切换至root用户,直接输入stty erase ^H ...