关于SPFA算法的优化方式

这篇随笔讲解信息学奥林匹克竞赛中图论部分的求最短路算法SPFA的两种优化方式。学习这两种优化算法需要有SPFA朴素算法的学习经验。在本随笔中SPFA朴素算法的相关知识将不予赘述。

上课!

No.1 SLF优化(Small Label First)

顾名思义,这种优化采用的方式是把较小元素提前。

就像dijkstra算法的堆优化一样。我们在求解最短路算法的时候是采取对图的遍历,每次求最小边的一个过程,为了寻找最小边,我们需要枚举每一条出边,如果我们一上来就找到这个边,那当然是非常爽的。一次找一次爽,一直找一直爽。所以我们采用了这种优化方式。

具体实现方式是把原来的队列变成双端队列,如果新入队的元素比队首元素还要小,就加入到队首,否则排到队尾。

模板如下:

void spfa()
{
memset(dist,0x3f,sizeof(dist));
memset(v,0,sizeof(v));
deque<int> q;
q.push_back(1);
v[1]=1;
dist[1]=0;
while(!q.empty())
{
int x=q.front();
q.pop_front();
v[x]=0;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(dist[y]>dist[x]+val[i])
{
dist[y]>dist[x]+val[i];
if(v[y]==0)
{
if(dist[y]<=dist[q.pront()])
q.push_front(y);
else
q.push_back(y);
v[y]=1;
}
}
}
}
}

No.2 LLL优化(Large Label Last)

顾名思义,它的策略是把大的元素放到后面。

你会说,这不跟上面的一样么?

不不不,这个优化针对的是出队元素。它的实现过程是:对于每个出队元素,比较它的dist[]和队列中dist的平均值,如果它的dist[]更大,将它弹出放到队尾。以此类推,直至dist[x]小于其平均值。

模板:

void spfa()
{
memset(dis, 0x3f, sizeof(dis));
queue<int> q;
q.push(1);
v[1] = 1;
dist[1] = 0;
cnt = 1;
while(!Q.empty())
{
int x = q.front();
while (dis[x]*cnt > sum)
{
q.pop();
q.push(x);
x = q.front();
}
q.pop();
cnt--;
sum -= dist[x];
v[x] = 0;
for (int i = head[x]; i ; i=nxt[i])
{
int y=to[i];
if (dist[y] > dist[x] + val[i])
{
dist[y] = dist[x] + val[i];
if (v[y]==0)
{
q.push(y);
sum += dist[y];
cnt++;
}
}
}
}
}

重点来了!!

No.3 SLF+LLL同时优化!

听名字就很高级。

是的,的确很高级,不仅高级,而且快。

我就直接上模板了。

void spfa()
{
memset(dist, 0x3f, sizeof(dist));
memset(v,0,sizeof(v));
deque<int> q;
q.push_back(1);
v[1] = 1;
dist[1] = 0;
cnt = 1;
while (!q.empty())
{
int x = q.front();
while (cnt*dist[x] > sum)
{
q.pop_back();
q.push_back(x);
x = q.front();
}
q.pop_front();
cnt--;
sum -= dist[x];
v[x] = 0;
for (int i = head[x]; i ; i=nxt[i])
{
int y=to[i];
if (dist[y] > dist[x] + val[i])
{
dist[y] = dist[x] + val[i];
if (!v[y])
{
if (dist[y] <= dist[q.front()])
q.push_front(y);
else
q.push_back(y);
v[y] = 1;
sum += dist[y];
cnt++;
}
}
}
}
}

下课!祝同学们AK IOI!!

关于SPFA算法的优化方式的更多相关文章

  1. 《SPFA算法的优化及应用》——姜碧野(学习笔记)

    一.核心性质:三角不等式.最短路满足d[v]<=d[u]+w(u,v) 二.SPFA两种实现: 常见的是基于bfs的,这是直接对bellman-ford用队列维护.根据最短路的长度最长为(n-1 ...

  2. 并不对劲的图论专题(三):SPFA算法的优化

    1.bzoj1489-> 这是个新套路. 我们希望找到最小的x,那么可以二分x,然后判断是否存在圈的边权的平均值小于等于x. 设圈的边权依次为w1,w2,w3,…,wk,平均值为p, 则有p= ...

  3. 蓝书3.3 SPFA算法的优化

    T1 最小圈 bzoj 1486 题目大意: 一个环的权值平均值为定义为一个这个环上所有边的权值和除以边数 求最小的环的权值平均值 思路: 二分一个值 把所有边减去这个值 判断是否有负环 #inclu ...

  4. 队列优化dijsktra(SPFA)的玄学优化

    转载:大佬博客 最近想到了许多优化spfa的方法,这里想写个日报与大家探讨下 前置知识:spfa(不带任何优化) 由于使用较多 STLSTL ,本文中所有代码的评测均开启 O_2O2​ 优化 对一些数 ...

  5. Dijkstra算法堆优化详解

    DIJ算法的堆优化 DIJ算法的时间复杂度是\(O(n^2)\)的,在一些题目中,这个复杂度显然不满足要求.所以我们需要继续探讨DIJ算法的优化方式. 堆优化的原理 堆优化,顾名思义,就是用堆进行优化 ...

  6. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  7. SPFA求最短路——Bellman-Ford算法的优化

    SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...

  8. SPFA算法 - Bellman-ford算法的进一步优化

    2017-07-27  22:18:11 writer:pprp SPFA算法实质与Bellman-Ford算法的实质一样,每次都要去更新最短路径的估计值. 优化:只有那些在前一遍松弛中改变了距离点的 ...

  9. luogu P3371 & P4779 单源最短路径spfa & 最大堆优化Dijkstra算法

    P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出 ...

随机推荐

  1. 【转】C++ - 结构体构造函数使用总结

    声明 转载自:https://www.cnblogs.com/wlw-x/p/11566191.html 关于结构体构造函数使用总结 三种结构体初始化方法 1.利用结构体自带的默认构造函数 2.利用带 ...

  2. JavaScript基础2

    本节内容: 1:ECMA对象 2:string对象 3:Array对象 4:BOM对象 5:DOM对象之节点 6:DOM对象之EVENT事件 7:DOM节点的增删改查 8: 实例练习 http://w ...

  3. 201777010217-金云馨《面向对象程序设计(Java)》第二周学习总结

    项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/nwnu-daizh/p ...

  4. 11.web5

    先补充点小知识: 关于jjencode 和  aaencode(颜文字) 1.什么是jjencode? 将JS代码转换成只有符号的字符串 2.什么是aaencode? 将JS代码转换成常用的网络表情 ...

  5. SP1043 GSS1 - Can you answer these queries I 线段树

    问题描述 LG-SP1043 题解 GSS 系列第一题. \(q\) 个询问,求 \([x,y]\) 的最大字段和. 线段树,维护 \([x,y]\) 的 \(lmax,rmax,sum,val\) ...

  6. DRF--认证和权限

    前戏 大家都知道http协议是无状态的,每次发送请求他们怎么知道我们是不是登录过呢?我们可以在用户登录之后给用户一个“暗号”,下次请求的时候带着这个“暗号”来.我们拿自己存的和携带过来的进行对比,如果 ...

  7. 【转】Java中的关键字 transient

    阅读目录 先解释下Java中的对象序列化 关于transient关键字 举个例子 参考资料 先解释下Java中的对象序列化 在讨论transient之前,有必要先搞清楚Java中序列化的含义: Jav ...

  8. Java 异常面试问题与解答

    Java 提供了一种健壮且面向对象的方法来处理称为 Java异常处理的异常情况. 1. Java中的异常是什么? 异常是在程序执行期间可能发生的错误事件,它会破坏其正常流程.异常可能源于各种情况,例如 ...

  9. EJB组件开发实记(1)

    安装JBoss或者Wildfly jdk1.4以上. Eclipes安装插件 JBoss Tools: eclipes Jee photon 在eclipes 内部点击 >>Windows ...

  10. JNDI和JDBC的区别-个人理解

    网上关于JNDI和JDBC的定义有很多,但是都很官方不容易理解,下面是我最近查阅资料得出的心得体会.希望对你在理解上有一点点的帮助,说的不对的请指正哦. JDBC: 看到最多的就是 Java Data ...