爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意: 给定 n 是一个正整数。

示例 1:

输入: 2

输出: 2

解释: 有两种方法可以爬到楼顶。

1.1 阶 + 1 阶

2.2 阶

示例 2:

输入: 3

输出: 3

解释: 有三种方法可以爬到楼顶。

1.1 阶 + 1 阶 + 1 阶

2.1 阶 + 2 阶

3.2 阶 + 1 阶


暴力法

分析

不妨举个例子,假设需要5阶才能到达楼顶,f(5)为到达楼顶的方法数。那么要到达第5阶,只可能有2种情况:1.从第4阶爬1个台阶;2.从第3阶爬2个台阶;这就把问题转化为求f(4)和f(3),即f(5) = f(4) + f(3),所以f(n) = f(n - 1) + f(n - 2)。

class Solution {
public int climbStairs(int n) { //f(1) = 1, f(2) = 2;
//f(n) = f(n - 1) + f(n - 2);
if(n == 1) return 1;
if(n == 2) return 2; return climbStairs(n - 1) + climbStairs(n - 2);
}
}

总结

代码虽然简单,但是我们画出递归树后会发现有很多冗余项,即很多重复计算,例如求f(11),需要求 f(10) + f(9),求f(10)又需要求f(9) + f(8),求f(9)又需要求f(8) + f(7),这里f(9)和f(8)分别计算了两次,非常耗时,其时间复杂度为O(2^n),提交也不通过。下面我将介绍两种基于此算法的优化算法。

记忆化递归

分析

上文我们分析到递归会有大量重复计算,事实上递归过程是有先后顺序的,如果先前计算的结果可以存储,那么后面需要用到的话就可以直接拿去用了,这样时间复杂度降为O(n),无疑是一次降维打击。

class Solution {

    public int climbStairs(int n) {

        int[] meno = new int[n + 1]; //存储每一次的结果,初始全为0
return __climbStairs(n, meno);
} public int __climbStairs(int n, int[] meno){ if(n == 1) return 1;
if(n == 2) return 2;
if(meno[n] > 0) return meno[n]; //大于0就证明已经计算过了,直接返回
meno[n] = __climbStairs(n - 1, meno) + __climbStairs(n - 2, meno); return meno[n];
}
}

动态规划

分析

不难发现,这个问题可以被分解为一些包含最优子结构的子问题,即它的最优解可以从其子问题的最优解来有效地构建,我们可以使用动态规划来解决这一问题。令 dp[i] 表示能到达第 i 阶的方法总数,从上文的分析中易知该动态转移方程为dp[i] = dp[i - 1] + dp[ i - 2];

public class Solution {
public int climbStairs(int n) {
if (n == 1) {
return 1;
}
int[] dp = new int[n + 1];
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}

打表法

分析

如果单从通过这道题目来说,打表无疑是另辟蹊径,既然网站有时间限制,而且测试用例很适合打表,那么我在本地把每一种阶梯的方法数求出来,用一个容器存储,传入哪个阶梯我就有哪个答案,时间复杂度为O(1)。

public class Solution {
public int climbStairs(int n) { int result = 0; switch(n){
case 1: result = 1; break;
case 2: result = 2; break;
case 3: result = 3; break;
case 4: result = 5; break;
case 5: result = 8; break;
case 6: result = 13; break;
case 7: result = 21; break;
case 8: result = 34; break;
case 9: result = 55; break;
case 10: result = 89; break;
case 11: result = 144; break;
case 12: result = 233; break;
case 13: result = 377; break;
case 14: result = 610; break;
case 15: result = 987; break;
case 16: result = 1597; break;
case 17: result = 2584; break;
case 18: result = 4181; break;
case 19: result = 6765; break;
case 20: result = 10946; break;
case 21: result = 17711; break;
case 22: result = 28657; break;
case 23: result = 46368; break;
case 24: result = 75025; break;
case 25: result = 121393; break;
case 26: result = 196418; break;
case 27: result = 317811; break;
case 28: result = 514229; break;
case 29: result = 832040; break;
case 30: result = 1346269; break;
case 31: result = 2178309; break;
case 32: result = 3524578; break;
case 33: result = 5702887; break;
case 34: result = 9227465; break;
case 35: result = 14930352; break;
case 36: result = 24157817; break;
case 37: result = 39088169; break;
case 38: result = 63245986; break;
case 39: result = 102334155; break;
case 40: result = 165580141; break;
case 41: result = 267914296; break;
case 42: result = 433494437; break;
case 43: result = 701408733; break;
case 44: result = 1134903170; break;
case 45: result = 1836311903; break; }
return result;
}
}

斐波那契公式

分析

从我们分析出来的递归公式可以看出这就是一个求斐波那契数的问题,那么根据斐波那契公式(公式通过求根公式或者数列的递推式可以求出)我们可以直接求得结果。

public class Solution {
public int climbStairs(int n) {
double sqrt5=Math.sqrt(5);
double fibn=Math.pow((1+sqrt5)/2,n+1)-Math.pow((1-sqrt5)/2,n+1);
return (int)(fibn/sqrt5);
}
}

参考文献

参考文章:https://leetcode-cn.com/problems/climbing-stairs/solution/pa-lou-ti-by-leetcode/

【LeetCode】70. 爬楼梯的更多相关文章

  1. LeetCode 70. 爬楼梯(Climbing Stairs)

    70. 爬楼梯 70. Climbing Stairs 题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意: 给定 ...

  2. LeetCode 70 - 爬楼梯 - [递推+滚动优化]

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2输出: 2解释: 有两种方 ...

  3. Leetcode 70.爬楼梯 By Python

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...

  4. [每日一题2020.06.14]leetcode #70 爬楼梯 斐波那契数列 记忆化搜索 递推通项公式

    题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, ...

  5. 力扣(LeetCode)70. 爬楼梯

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...

  6. Leetcode题目70.爬楼梯(动态规划+递归-简单)

    题目描述: 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 ...

  7. LeetCode 题解 | 70. 爬楼梯

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...

  8. leetcode刷题-70爬楼梯

    题目 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 思路 最开始使用的是回溯的方法,但是时间效 ...

  9. 【Leetcode】爬楼梯

    问题: 爬n阶楼梯,每次只能走1阶或者2阶,计算有多少种走法. 暴力计算+记忆化递归. 从位置 i 出发,每次走1阶或者2阶台阶,记录从位置 i 出发到目标 n 所有的走法数量,memoA[i] .记 ...

随机推荐

  1. MAC 软件提示已损坏,需要移到废纸篓的解决方法

    解决方法一: 允许任何来源的应用.在系统偏好设置里,打开“安全性和隐私”,将“允许从以下位置下载的应用程序”设置为“任何来源“.当然,这个设置已经无法在Mac OS Sierra上完成了. 在Mac ...

  2. Linux-shell学习笔记1

    1.检查 /etc/shells 这个文件可以得到有多少可用的shell,一般有一下几个: /bin/sh (已经被 /bin/bash 所取代) /bin/bash (就是 Linux 默认的 sh ...

  3. apk系统签名小技巧

    前言 对于经常和android系统打交道的攻城狮来说,给app打系统签名一定是日常操作啦.由于最近使用的比较多,特此总结一下,减少复制粘贴的操作,通过命令行来搞定. 简化前的操作 1.Android ...

  4. iOSMultipeerConnectivity使用

    MultipeerConnectivity是iOS7推出的多点连接框架,多用于文件传输,类似于iOS设备的airTrop隔空投放,在没有联网的情况下也能聊天传文件. 使用方法,一个设备作为广播开放Pe ...

  5. ckeditor5 使用第一天 下载并加载居中,居左,居右功能

    官方网站地址https://ckeditor.com/,下载zip包或者从git上下载, 下载完成后解压文件,将文件复制到项目中 , 引用ckeditor.js,zh-cn.js路径到项目中, 初始化 ...

  6. QT总结

    作为一个QT(C++/linux/windows)开发工程师,把自己在工作中遇到的一些QT问题持续总结给大家,一起分享: 一.隐藏鼠标:QApplication::setOverrideCursor( ...

  7. Python 3 线程模型,进程模型记录

    最近需要使用 python3 多线程处理大型数据,顺道探究了一下,python3 的线程模型的情况,下面进行简要记录: 多线程运行的优点: 使用线程可以把程序中占用时间较长的任务放到后台去处理: 用户 ...

  8. spring mongodb用法

    A field annotated with @Id (org.springframework.data.annotation.Id) will be mapped to the '_id' fiel ...

  9. 信号驱动式I/O

    信号驱动式I/O是指进程预先告知内核,使得当某个描述符上发生某事时,内核使用信号通知相关进程. 异步I/O是进程执行I/O系统调用(读或写)告知内核启动某个I/O操作,内核启动I/O操作后立刻返回到进 ...

  10. Acwing40. 顺时针打印矩阵

    地址 https://www.acwing.com/solution/acwing/content/3623/ 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字. 样例 输入: [ [, ...