看完之后推荐再看一看【最小生成树之Prim算法】-C++

定义:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或Prim(普里姆)算法求出。 。

​在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得

的 w(T) 最小,则此 T 为 G 的最小生成树。

最小生成树其实是最小权重生成树的简称。

许多应用问题都是一个求无向连通图的最小生成树问题。例如:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同;另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树。

这一章主要介绍Kruskal算法。

Kruskal算法的时间复杂度:O(m*log(n))(点数n边数m)

主要思路:

输入之后对边权值进行排序,然后按边权值从小到大进行合并(merge)操作,如果操作成功(被合并的两个点不在一棵树上),则把这两个顶点的边权值加入总数,最后输出total即可。

主要使用:

“并查集。”

洛谷P3366【模板】最小生成树

这道题我第一次是用Kruskal来写的,具体思路再讲解一下。

首先把get和merge函数写好,为了方便,我把merge写成了bool类型:如果成功合并(要求合并的两个顶点不在一棵树上)就返回true。

然后是最正常的运用结构体进行循环读入,读入完成之后写cmp排序函数按边权值从小到大进行排序。

接下来才和并查集扯上关系,所以要重新定义fa数组,然后进行初始化;

核心代码

	int cnt=0;
int total=0;
for(int i=1;i<=p;i++)//p为边数
{
if(merge(mp[i].u,mp[i].v))
{
cnt++;
total+=mp[i].w;
if(cnt==p-1) break;
}
}

这段代码主要是为了统计权值和。把权值从最小到最大跑一遍,如果能够合并就合并然后加进total即可。然后就没什么难的了emm。

下面贴代码;

参考代码:

#include<bits/stdc++.h>
using namespace std;
struct noded
{
int u,v;
int w;
noded(){}
noded(int uu,int vv,int ww)
{
u=uu,v=vv,w=ww;
}
}mp[200010];
bool cmp(noded x,noded y)
{
return x.w<y.w;
}
int fa[5010];
int get(int x)
{
if(fa[x]==x)return x;
else
{
fa[x]=get(fa[x]);
return fa[x];
}
}
bool merge(int x,int y)
{
int r1=get(x),r2=get(y);
if(r1!=r2)
{
fa[r1]=r2;
return true;
}
else return false;
}
int ans[250010];
void init()
{
for(int i=1;i<=5000;i++)
{
fa[i]=i;
}
}
int main()
{
//sqrt(pow((x1-x2),2)+pow((y1-y2),2));
int n,p;
cin>>n>>p;
for(int i=1;i<=p;i++)
{
cin>>mp[i].u>>mp[i].v>>mp[i].w;
}
sort(mp+1,mp+1+p,cmp);
//for(int i=1;i<=k;i++)
//{
// cout<<endl<<mp[i].w;
//}
init();
int cnt=0;
int total=0;
for(int i=1;i<=p;i++)
{
if(merge(mp[i].u,mp[i].v))
{
cnt++;
total+=mp[i].w;
if(cnt==p-1) break;
}
}
cout<<total<<endl;
return 0;
}

ov.

【最小生成树之Kruskal算法】的更多相关文章

  1. 最小生成树的Kruskal算法实现

    最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...

  2. 数据结构与算法--最小生成树之Kruskal算法

    数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...

  3. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  4. HDU1875——畅通工程再续(最小生成树:Kruskal算法)

    畅通工程再续 Description相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当 ...

  5. 23最小生成树之Kruskal算法

    图的最优化问题:最小生成树.最短路径 典型的图应用问题 无向连通加权图的最小生成树 有向/无向加权图的最短路径 四个经典算法 Kruskal算法.Prim算法---------------最小生成树 ...

  6. 最小生成树的Kruskal算法

        库鲁斯卡尔(Kruskal)算法是一种按照连通网中边的权值递增的顺序构造最小生成树的方法.Kruskal算法的基本思想是:假设连通网G=(V,E),令最小生成树的初始状态为只有n个顶点而无边的 ...

  7. 算法学习记录-图——最小生成树之Kruskal算法

    之前的Prim算法是基于顶点查找的算法,而Kruskal则是从边入手. 通俗的讲:就是希望通过 边的权值大小 来寻找最小生成树.(所有的边称为边集合,最小生成树形成的过程中的顶点集合称为W) 选取边集 ...

  8. 图论之最小生成树之Kruskal算法

    Kruskal算法,又称作为加边法,是配合并查集实现的. 图示: 如图,这是一个带权值无向图我们要求它的最小生成树. 首先,我们发现在1的所有边上,连到3的边的边权值最小,所以加上这条边. 然后在3上 ...

  9. 【转载】最小生成树之Kruskal算法

    给定一个无向图,如果它任意两个顶点都联通并且是一棵树,那么我们就称之为生成树(Spanning Tree).如果是带权值的无向图,那么权值之和最小的生成树,我们就称之为最小生成树(MST, Minim ...

随机推荐

  1. 元素命名空间中的“MvcBuildViews”无效

    原文:元素命名空间中的"MvcBuildViews"无效 症状描述: VS2010打开项目时提示:"元素 命名空间"http://schemas.microso ...

  2. C#读取数据库内容并转换成xml文件

    OleDbConnection conn = new OleDbConnection(@"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\bi ...

  3. C# System.Windows.Forms.WebBrowser中判断浏览器内核和版本

    参考 [完美]原生JS获取浏览器版本判断--支持Edge,IE,Chrome,Firefox,Opera,Safari,以及各种使用Chrome和IE混合内核的浏览器 利用js来判断 namespac ...

  4. VS中添加第三方库及相对路径设置

    原文 VS中添加第三方库及相对路径设置 对于一些第三方的SDK,一般会包含头文件(*.h),静态库文件(*.lib)和动态库文件(*.dll). 1.  文件位置:为了提高程序的可移植性,将第三库放在 ...

  5. 毕设(四)ListBox

    列表框(ListBox)用于提供一组条目(数据项),用户可以用鼠标选择其中一个或者多个条目,但是不能直接编辑列表框的数据.当列表框不能同时显示所有项目时候,他将自动添加滚动条,使用户可以滚动查阅所有选 ...

  6. 为何只能在其关联的线程内启动timer?(Qt会检查一致性,否则就不执行)

    为何只能在其关联的线程内启动timer? 在QTimer源码分析(以Windows下实现为例) 一文中,我们谈到: QTimer的是通过QObject的timerEvent()实现的,开启和关闭定时器 ...

  7. Windows环境下使用Node.js

    作者:短工邦技术部 - 陈文哲 Parse用的就是Node.js,所以我们要先了解什么是Node.js,以及做一些简单的操作. Node.js 的主要思路是:使用非阻塞的,事件驱动的 I/O 操作来保 ...

  8. Google C++测试框架系列高级篇:第一章 更多关于断言的知识

    原始链接:More Assertions 词汇表 现在你应该已经读完了入门篇并且会使用GTest来写测试.是时候来学一些新把戏了.这篇文档将教会你更多知识:用断言构造复杂的失败信息,传递致命失败,重用 ...

  9. java之jdbc学习——QueryRunner

    jdbc是ORM框架的基础,但将数据库中的表映射到java对象,并进行增删改查,并不是一件简单的事情. 涉及到jdbc.注解和反射的一些基础知识. 以下内容来自网友的分享,并做了一些增减,作为笔记记录 ...

  10. shell多线程(2)之基于管道实现并发

    在shell脚本里批量执行程序是比较常见的方式,如果程序很多,每个执行时间比较长,则顺序执行需要花费大量的时间. 此时并发就成为我们考虑的方向. 上篇<shell多线程>中我们已经简单实现 ...