某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。

Input

第一行包含一个整数n,表示地上有n个装置,装置的编号从0到n-1,接下来一行有n个正整数,依次为那n个装置的初始弹力系数。第三行有一个正整数m,接下来m行每行至少有两个数i、j,若i=1,你要输出从j出发被弹几次后被弹飞,若i=2则还会再输入一个正整数k,表示第j个弹力装置的系数被修改成k。对于20%的数据n,m<=10000,对于100%的数据n<=200000,m<=100000

Output

对于每个i=1的情况,你都要输出一个需要的步数,占一行。

Sample Input4 1 2 1 1 31 12 1 11 1

Sample Output23


题解:这是一个分块的问题;我们可以将其分成sqrt(n)块,如果有剩余,使num+=1;然后分别记录从当前块到下一个快所需的步数nxt[i]以及跳到下一个快的位置id[i],如果一步不能到达下一个块 nxt[i]=nxt[i+a[i]]+1,id[i]=id[i+a[i]];(注: a[i]为第i 个弹跳的幅度),若能,nxt[i]=1,id[i]=i+a[i]。然后如果改变摸个位置的幅度,只需维护这个位置所在的块即可(可以节省时间);

AC代码为:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>

using namespace std;  
typedef long long ll;  
const int N=200005;  
int belong[N],block,num,l[N],r[N],x[N],y[N];  

int a[N],n,m;  
  
void build()  
{  
    block=sqrt(n);     
    num=n/block;if(n%block) num++;  
    for(int i=1;i<=num;i++)  
        l[i]=(i-1)*block+1,r[i]=i*block;  
    r[num]=n;  
    for(int i=1;i<=n;i++)  
        belong[i]=(i-1)/block+1;  
    for(int i=n;i>=1;i--)   
    {  
        if(i+a[i]>r[belong[i]])  
        {  
            x[i]=1;  
            y[i]=i+a[i];  
        }  
        else  
        {  
            x[i]=x[i+a[i]]+1;  
            y[i]=y[i+a[i]];  
        }  
    }  
}  
void update(int s,int k)  
{  
    a[s]=k;  
    for(int i=s;i>=r[belong[s]-1];i--)  
    {  
        if(i+a[i]>r[belong[i]])  
        {  
            x[i]=1;  
            y[i]=i+a[i];  
        }  
        else  
        {  
            x[i]=x[i+a[i]]+1;  
            y[i]=y[i+a[i]];  
        }  
    }  
}  
int query(int s)  
{  
    int res=0;  
    while(s<=n)  
    {  
        res+=x[s];  
        s=y[s];  
    }  
    return res;  
}  
int main()  
{  
    while(scanf("%d",&n)!=EOF)  
    {  
        for(int i=1;i<=n;i++)  
            scanf("%d",&a[i]);  
        build();  
        scanf("%d",&m);  
        int s,p,q;  
        for(int i=1;i<=m;i++)  
        {  
            scanf("%d",&s);  
            if(s==1)  
            {  
                scanf("%d",&p);  
                printf("%d\n",query(p+1));   
            }  
            if(s==2)  
            {  
                scanf("%d%d",&p,&q);  
                update(p+1,q);  
            }  
        }  
    }  
}

HYSBZ-2002弹飞绵羊的更多相关文章

  1. BZOJ 2002 弹飞绵羊(分块)

    题目:弹飞绵羊 这道题,据说是lct裸题,但是lct那么高级的数据结构,我并不会,所以采取了学长讲过的分块做法,我们对序列分块,可以定义两个数组,其中一个表示从当前位置跳出当前块需要多少步,另一个数组 ...

  2. [bzoj] 2002 弹飞绵羊 || LCT

    原题 简单的LCT练习题. 我们发现对于一个位置x,他只能跳到位置x+k,也就是唯一的父亲去.加入我们将弹飞的绵羊定义为跳到了n+1,那么这就形成了一棵树.而因为要修改k,所以这颗树是动态连边的,那么 ...

  3. bzoj 2002: 弹飞绵羊 Link-Cut-Tree

    题目: Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

  4. bzoj 2002 弹飞绵羊 分块

    正解lct,然而本蒟蒻并不会.... 分块思路很清晰,处理出每个点弹出所在块所需要的步数及出去后的第一个位置 #include<cstdio> #include<cstring> ...

  5. BZOJ 2002 弹飞绵羊

    LCT 刚学LCT,对LCT的性质不太熟练,还需要多多练习.. 对每一个点,将其与它能够到达的点连一条虚边.弹出去的话就用n+1这个节点表示. 第一种操作我们需要从LCT的性质入手,问的问题其实就是x ...

  6. bzoj 2002 弹飞绵羊 lct裸题

    上一次用分块过了, 今天换了一种lct(link-cut tree)的写法. 学lct之前要先学过splay. lct 简单的来说就是 一颗树, 然后每次起作用的都是其中的某一条链. 所以每次如果需要 ...

  7. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 9071  Solved: 4652[Submi ...

  8. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 分块

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  9. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 LCT

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  10. bzoj 2002: [Hnoi2010]Bounce 弹飞绵羊 動態樹

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 4055  Solved: 2172[Submi ...

随机推荐

  1. Spring注解之@RestControllerAdvice

    前言 前段时间部门搭建新系统,需要出异常后统一接口的返回格式,于是用到了Spring的注解@RestControllerAdvice.现在把此注解的用法总结一下. 用法 首先定义返回对象Respons ...

  2. jsp页面时间的转换js

    /**                            * 日期 转换为 Unix时间戳              * @param <string> 2014-01-01 20:2 ...

  3. Kickstart Round H 2019 Problem B. Diagonal Puzzle

    有史以来打得最差的一次kickstart竟然发生在winter camp出结果前的最后一次ks = = 感觉自己的winter camp要凉了 究其原因,无非自己太眼高手低,好好做B, C的小数据,也 ...

  4. 调用RESTful GET方法

    package restclient; import java.io.BufferedReader; import java.io.IOException; import java.io.InputS ...

  5. 开始逆向objc基础准备(一)简单认识一下arm32,以及与x86汇编指令类比

    ARM32体系中有31或33个通用寄存器,没有特定的某种态下有r0-r15一共16个寄存器,快速中断态下有另一组r8-r12备份寄存器,在用户态和系统态之外其它态下都各自有一组r13-r14备份寄存器 ...

  6. usaco training <1.2 Greedy Gift Givers>

    题面 Task 'gift1': Greedy Gift Givers A group of NP (2 ≤ NP ≤ 10) uniquely named friends has decided t ...

  7. vue路由传参刷新丢失

    没有系统学习过vue,以前使用路由传参都是直接this.$router.push({name:'main',params:{'id': 123}})的,没有在路由定义中配置参数,如下: router: ...

  8. 搭建wordPress遇到无法连接数据库的问题

    在确认了数据库用户,密码,地址都没有错的情况下,仍然出现无法连接数据库的问题,以至无法安装wordpress 我的wordpress:4.8.1-zh_CN 解决办法: 1.更改php的版本(我的改为 ...

  9. Few-shot Object Detection via Feature Reweighting (ICCV2019)

    论文:https://arxiv.org/abs/1812.01866 代码:https://github.com/bingykang/Fewshot_Detection 1.研究背景 深度卷积神经网 ...

  10. Ubuntu中使用Nginx+rtmp模块搭建流媒体视频点播服务

    1. 背景 不知不觉笔者来到流媒体部门已经一年半多了,积攒了不少的流媒体知识,但平时工作也比较忙,很少进行总结性的梳理,最近准备花几个周末时间写一个流媒体系列的实践文章,也算是给自己做总结的同时帮助有 ...