某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。

Input

第一行包含一个整数n,表示地上有n个装置,装置的编号从0到n-1,接下来一行有n个正整数,依次为那n个装置的初始弹力系数。第三行有一个正整数m,接下来m行每行至少有两个数i、j,若i=1,你要输出从j出发被弹几次后被弹飞,若i=2则还会再输入一个正整数k,表示第j个弹力装置的系数被修改成k。对于20%的数据n,m<=10000,对于100%的数据n<=200000,m<=100000

Output

对于每个i=1的情况,你都要输出一个需要的步数,占一行。

Sample Input4 1 2 1 1 31 12 1 11 1

Sample Output23


题解:这是一个分块的问题;我们可以将其分成sqrt(n)块,如果有剩余,使num+=1;然后分别记录从当前块到下一个快所需的步数nxt[i]以及跳到下一个快的位置id[i],如果一步不能到达下一个块 nxt[i]=nxt[i+a[i]]+1,id[i]=id[i+a[i]];(注: a[i]为第i 个弹跳的幅度),若能,nxt[i]=1,id[i]=i+a[i]。然后如果改变摸个位置的幅度,只需维护这个位置所在的块即可(可以节省时间);

AC代码为:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>

using namespace std;  
typedef long long ll;  
const int N=200005;  
int belong[N],block,num,l[N],r[N],x[N],y[N];  

int a[N],n,m;  
  
void build()  
{  
    block=sqrt(n);     
    num=n/block;if(n%block) num++;  
    for(int i=1;i<=num;i++)  
        l[i]=(i-1)*block+1,r[i]=i*block;  
    r[num]=n;  
    for(int i=1;i<=n;i++)  
        belong[i]=(i-1)/block+1;  
    for(int i=n;i>=1;i--)   
    {  
        if(i+a[i]>r[belong[i]])  
        {  
            x[i]=1;  
            y[i]=i+a[i];  
        }  
        else  
        {  
            x[i]=x[i+a[i]]+1;  
            y[i]=y[i+a[i]];  
        }  
    }  
}  
void update(int s,int k)  
{  
    a[s]=k;  
    for(int i=s;i>=r[belong[s]-1];i--)  
    {  
        if(i+a[i]>r[belong[i]])  
        {  
            x[i]=1;  
            y[i]=i+a[i];  
        }  
        else  
        {  
            x[i]=x[i+a[i]]+1;  
            y[i]=y[i+a[i]];  
        }  
    }  
}  
int query(int s)  
{  
    int res=0;  
    while(s<=n)  
    {  
        res+=x[s];  
        s=y[s];  
    }  
    return res;  
}  
int main()  
{  
    while(scanf("%d",&n)!=EOF)  
    {  
        for(int i=1;i<=n;i++)  
            scanf("%d",&a[i]);  
        build();  
        scanf("%d",&m);  
        int s,p,q;  
        for(int i=1;i<=m;i++)  
        {  
            scanf("%d",&s);  
            if(s==1)  
            {  
                scanf("%d",&p);  
                printf("%d\n",query(p+1));   
            }  
            if(s==2)  
            {  
                scanf("%d%d",&p,&q);  
                update(p+1,q);  
            }  
        }  
    }  
}

HYSBZ-2002弹飞绵羊的更多相关文章

  1. BZOJ 2002 弹飞绵羊(分块)

    题目:弹飞绵羊 这道题,据说是lct裸题,但是lct那么高级的数据结构,我并不会,所以采取了学长讲过的分块做法,我们对序列分块,可以定义两个数组,其中一个表示从当前位置跳出当前块需要多少步,另一个数组 ...

  2. [bzoj] 2002 弹飞绵羊 || LCT

    原题 简单的LCT练习题. 我们发现对于一个位置x,他只能跳到位置x+k,也就是唯一的父亲去.加入我们将弹飞的绵羊定义为跳到了n+1,那么这就形成了一棵树.而因为要修改k,所以这颗树是动态连边的,那么 ...

  3. bzoj 2002: 弹飞绵羊 Link-Cut-Tree

    题目: Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

  4. bzoj 2002 弹飞绵羊 分块

    正解lct,然而本蒟蒻并不会.... 分块思路很清晰,处理出每个点弹出所在块所需要的步数及出去后的第一个位置 #include<cstdio> #include<cstring> ...

  5. BZOJ 2002 弹飞绵羊

    LCT 刚学LCT,对LCT的性质不太熟练,还需要多多练习.. 对每一个点,将其与它能够到达的点连一条虚边.弹出去的话就用n+1这个节点表示. 第一种操作我们需要从LCT的性质入手,问的问题其实就是x ...

  6. bzoj 2002 弹飞绵羊 lct裸题

    上一次用分块过了, 今天换了一种lct(link-cut tree)的写法. 学lct之前要先学过splay. lct 简单的来说就是 一颗树, 然后每次起作用的都是其中的某一条链. 所以每次如果需要 ...

  7. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 9071  Solved: 4652[Submi ...

  8. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 分块

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  9. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 LCT

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  10. bzoj 2002: [Hnoi2010]Bounce 弹飞绵羊 動態樹

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 4055  Solved: 2172[Submi ...

随机推荐

  1. Java面向对象程序设计第15章5

    5. 利用URLConnetction对象编写程序返回某网站的首页,并将首页的内容存放到文件当中. import java.net.*; import java.io.*; public class ...

  2. LoadRunner具体流程

    创建负载测试场景场景目标:模拟10个用户同时登陆.搜索航班.购买机票.查看航班路线并退出打开Controller并创建一个新场景1.打开HP LoadRunner2.打开Controller在Load ...

  3. 在Debian/Ubuntu上面安装升级nginx到最新版

    在Debian下面通过 apt-get 可以自动安装 nginx,不过版本一般比较老,如果想要使用nginx的最新特性就需要升级版本.   一般安装可以通过编绎源文件安装,但可能需要安装很多编绎工具, ...

  4. 一.web服务机制

    web服务机制 我们先跟着**(Web服务器工作原理总体描述01)这张图,将一次Web服务的工作流程过一遍,我们假设以浏览器作为客户端(1) 用户做出了一个操作,可以是填写网址敲回车,可以是点击链接, ...

  5. .NET Core 3 WPF MVVM框架 Prism系列之数据绑定

    一.安装Prism 1.使用程序包管理控制台 Install-Package Prism.Unity -Version 7.2.0.1367 也可以去掉‘-Version 7.2.0.1367’获取最 ...

  6. 力扣(LeetCode)删除排序链表中的重复元素II 个人题解

    给定一个排序链表,删除所有含有重复数字的节点,只保留原始链表中 没有重复出现 的数字. 思路和上一题类似(参考 力扣(LeetCode)删除排序链表中的重复元素 个人题解)) 只不过这里需要用到一个前 ...

  7. 领扣(LeetCode)寻找旋转排序数组中的最小值 个人题解

    假设按照升序排序的数组在预先未知的某个点上进行了旋转. ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] ). 请找出其中最小的元素. 你可以假设数组中不存在重 ...

  8. 朱辉(茶水): Linux Kernel iowait 时间的代码原理

    本文系转载,著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作者: 朱辉(茶水) 来源: 微信公众号linux阅码场(id: linuxdev) 作者介绍 朱辉,个人主页 htt ...

  9. 新一代开源即时通讯应用源码定制 运营级IM聊天源码

    公司介绍:我们是专业的IM服务提供商!哇呼Chat是一款包含android客户端/ios客户端/pc客户端/WEB客户端的即时通讯系统.本系统完全自主研发,服务器端源码直接部署在客户主机.非任何第三方 ...

  10. 官网例子,mt-field password获取不到

    新尝试了Mint-UI,在使用表单组件Field时, 直接从demo中拷贝了如下代码: <mt-field label="username" placeholder=&quo ...