「POJ 3268」Silver Cow Party
Portal
Portal1: POJ
Portal2: Luogu
Description
One cow from each of N farms \((1 \le N \le 1000)\) conveniently numbered \(1 \cdots N\) is going to attend the big cow party to be held at farm #X \((1 \le X \le N)\). A total of \(M (1 \le M \le 100,000)\) unidirectional (one-way roads connects pairs of farms; road \(i\) requires \(T_i (1 \le Ti \le 100)\) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
寒假到了,\(N\)头牛都要去参加一场在编号为\(X\)(\(1 \le X \le N\))的牛的农场举行的派对(\(1 \le N \le 1000\)),农场之间有\(M\)(\(1 \le M \le 100000\))条有向路,每条路长\(Ti\)(\(1 \le Ti \le 100\))。
每头牛参加完派对后都必须回家,无论是去参加派对还是回家,每头牛都会选择最短路径,求这N头牛的最短路径(一个来回)中最长的一条路径长度。
Input
第一行三个整数\(N\),\(M\),\(X\);
第二行到第\(M + 1\)行:每行有三个整数\(A_i\),\(B_i\),\(T_i\) ,表示有一条从\(A_i\)农场到\(B_i\)农场的道路,长度为\(T_i\)。
Output
一个整数,表示最长的最短路得长度。
Sample Input
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
Sample Output
10
Hint

Solution
题目让我们一些奶牛走到一个点,再从那个点走回来的最短路之和的最大值。那么我们直接用dijkstra计算两次最短路(走过去,走回来)就可以了,最后判断一下,那头奶牛需要走的路是最长的,然后问题就解决了。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int INF = 0x3f3f3f3f, MAXN = 200005;
struct EDGE {
int nxt, to, val;
} edge[MAXN];
int n, m, S, cnt, U[MAXN], V[MAXN], VAL[MAXN], dis[MAXN], dist[MAXN], head[MAXN];
bool vis[MAXN];
inline void addedge(int u, int v, int val) {//邻接表存图
edge[++cnt].to = v; edge[cnt].val = val; edge[cnt].nxt = head[u]; head[u] = cnt;
}
inline void dijkstra(int S) {//dijkstra最短路
memset(dis, INF, sizeof(dis));
priority_queue< pair<int, int> > Q;
Q.push(make_pair(0, S));
dis[S] = 0;
while (!Q.empty()) {
int u = Q.top().second;
Q.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].to;
if (dis[v] > dis[u] + edge[i].val) {
dis[v] = dis[u] + edge[i].val;
Q.push(make_pair(-dis[v], v));
}
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &S);
memset(head, -1, sizeof(head));
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &U[i], &V[i], &VAL[i]);
addedge(U[i], V[i], VAL[i]);//正向建图
}
dijkstra(S);
for (int i = 1; i <= n; i++)
dist[i] = dis[i];//记录走到目标点的路程
cnt = 0;
memset(edge, 0, sizeof(edge));
memset(vis, 0, sizeof(vis));
memset(head, -1, sizeof(head));//注意清空数组
for (int i = 1; i <= m; i++)
addedge(V[i], U[i], VAL[i]);//反向建图
dijkstra(S);
int Max = -INF;
for (int i = 1; i <= n; i++)
Max = max(Max, dis[i] + dist[i]);//判断那个奶牛是走得最多的
printf("%d\n", Max);
return 0;
}
「POJ 3268」Silver Cow Party的更多相关文章
- 【POJ - 3268 】Silver Cow Party (最短路 Dijkstra算法)
Silver Cow Party Descriptions 给出n个点和m条边,接着是m条边,代表从牛a到牛b需要花费c时间,现在所有牛要到牛x那里去参加聚会,并且所有牛参加聚会后还要回来,给你牛x, ...
- POJ 3268:Silver Cow Party 求单点的来回最短路径
Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15989 Accepted: 7303 ...
- 「POJ 3666」Making the Grade 题解(两种做法)
0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...
- 「POJ Challenge」生日礼物
Tag 堆,贪心,链表 Solution 把连续的符号相同的数缩成一个数,去掉两端的非正数,得到一个正负交替的序列,把该序列中所有数的绝对值扔进堆中,用所有正数的和减去一个最小值,这个最小值的求法与「 ...
- 「POJ 1135」Domino Effect(dfs)
BUPT 2017 Summer Training (for 16) #3G 题意 摆好的多米诺牌中有n个关键牌,两个关键牌之间有边代表它们之间有一排多米诺牌.从1号关键牌开始推倒,问最后倒下的牌在哪 ...
- 「POJ - 1003」Hangover
BUPT 2017 summer training (16) #2C 题意 n个卡片可以支撑住的长度是1/2+1/3+1/4+..+1/(n+1)个卡片长度.现在给出需要达到总长度,求最小的n. 题解 ...
- 「POJ - 2318」TOYS (叉乘)
BUPT 2017 summer training (16) #2 A 题意 有一个玩具盒,被n个隔板分开成左到u右n+1个区域,然后给每个玩具的坐标,求每个区域有几个玩具. 题解 依次用叉积判断玩具 ...
- 「POJ 2699」The Maximum Number of Strong Kings
题目链接 戳我 \(Describe\) 一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边\((u, v)\)或\((v, u)\),表示\(u\)打败\(v\)或 ...
- 「POJ 2182」 Lost Cows
题目链接 戳这 题目大意 \(N(2 <= N <= 8,000)\)头奶牛有\(1..N\)范围内的独特品牌.对于每头排队的牛,知道排在那头牛之前的并比那头牛的品牌小的奶牛数目.根据这些 ...
随机推荐
- CSDN VIP如何添加自定义栏目
几个月前我也开始在csdn上开了博客,一来给自己加几个少的可怜的流量,再者,让公众号的原创文章获得更多的曝光,让有需要的同学看到. 写过csdn博客的同学都知道,默认只有打赏c币功能:也没有专门广告位 ...
- B-概率论-贝叶斯决策
目录 贝叶斯决策 一.贝叶斯决策理论 二.贝叶斯公式 2.1 从条件概率公式推导贝叶斯公式 2.2 从全概率公式推导贝叶斯公式 三.贝叶斯公式应用 更新.更全的<机器学习>的更新网站,更有 ...
- C#中的等值判断1
目录 简介 值类型和引用类型的相等比较 和相等比较相关的函数 string 和 System.Uri 的等值比较 泛型接口 IEquatable<T> 自定义比较方法 举例 总结 简介 最 ...
- e课表项目第二次冲刺周期第八天
昨天完成了什么? 昨天,我们组商量讨论了二层界面的设计,添加课程所需要的信息大概有:课程名称.教室.任课教师.上课时间.类型(单周.双周.单双周)以及备注等等.然后,我们通过界面的UI设计,让我们软件 ...
- linux 基本操作积累
1 sed 命令,替换含有指定字符的一整行数据 sed -i 's/原字符串/替换后的字符串/g' ./文件名 (此命令会全局替换[整个文件内替换]原字符串) sed -i.bak 's/原字符串/替 ...
- linux上安装LAMP笔记
B哥最近在参加比赛,需要把一个php项目部署到服务器上,故此在linux上安装LAMP环境,用于部署项目,第一次安装,做点儿笔记记录一下. 安装条件: Redhat或者CentOS linux环境已装 ...
- 渗透测试-基于白名单执行payload--Msiexec
复现亮神课程 基于白名单执行payload--Msiexec 0x01 关于msiexec Msiexec 是 Windows Installer 的一部分.用于安装 Windows Install ...
- PHP key_exists
此函数同array_key_exsits(). 1.函数的作用:判断一个数组是否含有某个键值 2.函数的参数: @param string $key @param array $haystack 3 ...
- opencv::源码编译
环境:win10.vs2017.cmake .java.python3.7默认安装. opencv源码:opencv-.zip opencv拓展库源码:opencv_contrib-.zip (注意: ...
- MyBatis(4)-- 动态SQL
如果使用JDBC或者类似于Hibernate的其他框架,很多时候要根据需要去拼装SQL,这是一个麻烦的事情.因为某些查询需要许多条件.通常使用其他框架需要大量的Java代码进行判断,可读性比较差,而M ...