一、KNN算法原理

  K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法。

  它的基本思想是: 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类。

  由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。

  KNN算法的描述:

    (1)计算测试数据与各个训练数据之间的距离;

    (2)按照距离的递增关系进行排序;

    (3)选取距离最小的K个点;

    (4)确定前K个点所在类别的出现频率

     (5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。

  算法流程:

    (1) 准备数据,对数据进行预处理。

    (2)选用合适的数据结构存储训练数据和测试元组。

    (3)设定参数,如k。

    (4)维护一个大小为k的的按距离由大到小的优先级队列,用于存储最近邻训练元组。随机从训练元组中选取k个元组作为初始的最近邻元组,分别计算测试元组到这k个元组的距离,将训练元组标号和距离存入优先级队列。
    (5)遍历训练元组集,计算当前训练元组与测试。元组的距离,将所得距离L 与优先级队列中的最大距离Lmax。
    (6)进行比较。若L>=Lmax,则舍弃该元组,遍历下一个元组。若L < Lmax,删除优先级队列中最大距离的元组,将当前训练元组存入优先级队列。
    (7)遍历完毕,计算优先级队列中k 个元组的多数类,并将其作为测试元组的类别。
    (8)测试元组集测试完毕后计算误差率,继续设定不同的k值重新进行训练,最后取误差率最小的k 值。

  算法优点:

    (1)简单,易于理解,易于实现,无需估计参数。

    (2)训练时间为零。它没有显示的训练,不像其它有监督的算法会用训练集train一个模型(也就是拟合一个函数),然后验证集或测试集用该模型分类。KNN只是把样本保存起来,收到测试数据时再处理,所以KNN训练时间为零。

    (3)KNN可以处理分类问题,同时天然可以处理多分类问题,适合对稀有事件进行分类。

    (4)特别适合于多分类问题(multi-modal,对象具有多个类别标签), KNN比SVM的表现要好。

    (5)KNN还可以处理回归问题,也就是预测。

    (6)和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感。

  算法缺点:

    (1)计算量太大,尤其是特征数非常多的时候。每一个待分类文本都要计算它到全体已知样本的距离,才能得到它的第K个最近邻点。

    (2)可理解性差,无法给出像决策树那样的规则。

    (3)是慵懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢。

    (4)样本不平衡的时候,对稀有类别的预测准确率低。当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。

    (5)对训练数据依赖度特别大,对训练数据的容错性太差。如果训练数据集中,有一两个数据是错误的,刚刚好又在需要分类的数值的旁边,这样就会直接导致预测的数据的不准确。

二、代码实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs #make_blobs 聚类数据生成器
from sklearn.neighbors import KNeighborsClassifier #KNeighborsClassfier K近邻分类
#sklearn 基于Python语言的机器学习工具,支持包括分类,回归,降维和聚类四大机器学习算法。
# 还包括了特征提取,数据处理和模型评估者三大模块。
# sklearn.datasets (众)数据集;sklearn.neighbors 最近邻 data=make_blobs(n_samples=5000,centers=5,random_state=8)
# n_samples 待生成样本的总数,sample 样本,抽样
# centers 要生成的样本中心数
# randon_state 随机生成器的种子
X,y=data
#返回值,X 生成的样本数据集;y 样本数据集的标签 plt.scatter(X[:,0],X[:,1],c=y,cmap=plt.cm.spring,edgecolor='k')
#c颜色,cmap Colormap实体或者是一个colormap的名字,cmap仅仅当c是一个浮点数数组的时候才使用。 clf=KNeighborsClassifier()
clf.fit(X,y) x_min,x_max=X[:,0].min()-1,X[:,0].max()+1
y_min,y_max=X[:,1].min()-1,X[:,1].max()+1 xx,yy=np.meshgrid(np.arange(x_min,x_max,0.02),
np.arange(y_min,y_max,0.02))
Z=clf.predict(np.c_[xx.ravel(),yy.ravel()])
Z=Z.reshape(xx.shape)
plt.pcolormesh(xx,yy,Z,cmap=plt.cm.Pastel1)
plt.scatter(X[:,0],X[:,1],c=y,cmap=plt.cm.spring,edgecolor='k')
plt.title('KNN-Classifier')
plt.scatter(6.88,4.18,marker='*',s=200,c='r')
plt.xlim([x_min,x_max]) print('模型建好后的运行结果如下:')
print('=======================')
print('新加入样本的类别是:',clf.predict([[6.72,4.29]])) print('该模型针对次数据集的分类正确率是:{:.2f}'.format(clf.score(X,y)))

输出结果:

模型建好后的运行结果如下:
=======================
新加入样本的类别是: [1]
该模型针对次数据集的分类正确率是:0.96



机器学习--K近邻 (KNN)算法的原理及优缺点的更多相关文章

  1. 机器学习-K近邻(KNN)算法详解

    一.KNN算法描述   KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近 ...

  2. 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法

    (一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...

  3. 机器学习之路--KNN算法

    机器学习实战之kNN算法   机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python ...

  4. 机器学习实战 之 KNN算法

    现在 机器学习 这么火,小编也忍不住想学习一把.注意,小编是零基础哦. 所以,第一步,推荐买一本机器学习的书,我选的是Peter harrigton 的<机器学习实战>.这本书是基于pyt ...

  5. python机器学习一:KNN算法实现

    所谓的KNN算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个 ...

  6. [机器学习] k近邻算法

    算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...

  7. Python3入门机器学习 - k近邻算法

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...

  8. TensorFlow实现knn(k近邻)算法

    首先先介绍一下knn的基本原理: KNN是通过计算不同特征值之间的距离进行分类. 整体的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于 ...

  9. 机器学习实战之kNN算法

    机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.1 ...

随机推荐

  1. Java每日一面(Part1:计算机网络)[19/11/13]

    作者:晨钟暮鼓c个人微信公众号:程序猿的月光宝盒 1. HTTP相关[1] 1.1 HTTP简介 ​ HTTP协议,即超文本传输协议,属于应用层的协议,他是基于请求和响应模式的无状态的 应用层协议. ...

  2. java 线程同步方法执行与唤醒实例

    账号提钱.存钱实例方法 public class Account { private int balance; private int maxBalance; public Account(int b ...

  3. js-07-事件

    一.js事件绑定在对象上的三种方法 a:将事件绑定在元素标签的属性上 <h3 onclick="console.log('奥特曼打怪兽')">海绵宝宝历险记</h ...

  4. flash的几种模式Normal Mode、DUAL Mode、Quad Mode的概念和区别

    概念 1. 标准SPI 标准SPI通常就称SPI,它是一种串行外设接口规范,有4根引脚信号:clk , cs, mosi, miso 2. Dual SPI 它只是针对SPI Flash而言,不是针对 ...

  5. 六、SQL优化

    SQL优化 优化策略 一.尽量全值匹配 当建立了索引列后,尽量在where条件中使用所有的索引. CREATE TABLE `staffs`( id int primary key auto_incr ...

  6. django.db.utils.OperationalError: (1093, "You can't specify target table 'xxx' for update in FROM clause")

    这个错误的意思是,不能在update某张表的where条件中,再次select这张表的某些值作为筛选条件,比如: update message set content = "hello&qu ...

  7. python进程基础点整理

    操作系统 串行: 一个程序完完整整的执行完再执行下一个 并发: 看起来像是同时运行,其实就是程序间的切换频率比较快,看不出来 并行:真正的同时运行 多道技术 空间复用:共用一个内存条,多个进程相互隔离 ...

  8. Gerrit常见命令及最佳实践

    概述 本文记录了笔者在使用Gerrit(一种免费.开放源代码的代码审查软件)过程中的一些微小的经验,在这里做个简单的分享. 克隆工程 git clone ssh://tusi@xx.xx.cn:294 ...

  9. 50行Python代码实现视频中物体颜色识别和跟踪

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 机器学习与统计学 PS:如有需要Python学习资料的小伙伴可以加 ...

  10. js的try catch使用心得

      1 try catch的使用,永远应该放在你的控制范围之内,而不应该防范未知的错误.也就是说你很清楚知道这里是有可能”出错“的,而且你很清楚知道什么前提下会出错,你就是要故意利用报错信息来区分错误 ...