斐波那契数列 51nod
输入1个数n(1 <= n <= 10^18)。
输出F(n) % 1000000009的结果。
运用矩阵乘法去做,有矩阵,可以矩阵快速幂求出转移矩阵即可得到结果。

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
typedef long long LL;
int n = ;
struct mat
{
LL a[][];
};
mat mul(mat m1,mat m2)
{
mat ans;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
LL temp = ;
for(int k=;k<n;k++)
{
temp+=m1.a[i][k]*m2.a[k][j];
}
ans.a[i][j] = temp % ;
}
return ans;
}
mat pow(mat m,LL b)
{
if(b<=)
return m;
mat temp = pow(m,b/);
if(b&)
return mul(mul(temp,temp),m);
else
return mul(temp,temp);
}
int main()
{
LL num;
mat beg;
beg.a[][]=beg.a[][]=beg.a[][]=;beg.a[][]=;
cin>>num;
cout<<pow(beg,num-).a[][]<<endl;
return ;
}

输入N(N <= 1000)
输出数量 Mod 10^9 + 7
3
3 显然,N=1时一种方法,N=2时有两种方法。
当N>2,可分为两种情况,1是竖着放,那么方法数目为前n-1个的结果,f(n-1)
2是两个横着放,这样占用了两个格子,方法数目是前n-2个结果 f(n-2)
f(n)=f(n-1)+f(n-2),f(1)=1,f(2)=2;
由上面程序略作修改
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
typedef long long LL;
int n = ;
#define M 1000000007
struct mat
{
LL a[][];
};
mat mul(mat m1,mat m2)
{
mat ans;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
LL temp = ;
for(int k=;k<n;k++)
{
temp+=m1.a[i][k]*m2.a[k][j];
}
ans.a[i][j] = temp%M;
}
return ans;
}
mat pow(mat m,LL b)
{
if(b<=)
return m;
mat temp = pow(m,b/);
if(b&)
return mul(mul(temp,temp),m);
else
return mul(temp,temp);
}
int main()
{
LL num;
mat beg;
beg.a[][]=beg.a[][]=beg.a[][]=;beg.a[][]=;
cin>>num;
mat tmp;
tmp.a[][]=,tmp.a[][]=tmp.a[][]=,tmp.a[][]=;
mat r = pow(beg,num-);
mat as=mul(tmp,r);
cout<<as.a[][]<<endl;
return ;
}
输入3个数:A,B,N。数字之间用空格分割。(-10000 <= A, B <= 10000, 1 <= N <= 10^9)
输出f(n)的值。 同样思路用矩阵做,注意避免负数的出现 (ans+7)%7.只需把递归式中系数修改。
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
typedef long long LL;
int n = ;
#define M 1000000007
struct mat
{
LL a[][];
};
mat mul(mat m1,mat m2)
{
mat ans;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
LL temp = ;
for(int k=;k<n;k++)
{
temp+=m1.a[i][k]*m2.a[k][j] ;
}
ans.a[i][j] = (temp+)%;
}
return ans;
}
mat pow(mat m,LL b)
{
if(b<=)
return m;
mat temp = pow(m,b/);
if(b&)
return mul(mul(temp,temp),m);
else
return mul(temp,temp);
}
int main()
{
LL num,t1,t2;
cin>>t1>>t2>>num;
mat beg;
beg.a[][]=t1,beg.a[][]=t2,beg.a[][]=;beg.a[][]=;
mat r = pow(beg,num-);
cout<<(r.a[][]+r.a[][]+)%<<endl;
return ;
}
斐波那契数列 51nod的更多相关文章
- 51Nod——T 1242 斐波那契数列的第N项
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 ...
- (矩阵快速幂)51NOD 1242斐波那契数列的第N项
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, ...
- 1242 斐波那契数列的第N项
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F( ...
- 斐波那契数列的第N项
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 题目: 斐波那契数列的定义如下: F(0) = 0 ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
- 算法: 斐波那契数列C/C++实现
斐波那契数列: 1,1,2,3,5,8,13,21,34,.... //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...
随机推荐
- HDU5289
题意:求解存在最大差值小于给定K值的所有区间段. 输入: T(测试数据) n(数组个数)K(给定区间值的范围) ai...(数组值) 输出: ss(所有满足符合条件的区间段) 思路:二分+ST算法,首 ...
- java.lang.UnsupportedClassVersionError: Bad version number in .class file
java.lang.UnsupportedClassVersionError: Bad version number in .class file造成这种过错是ni的支撑Tomcat运行的JDK版本与 ...
- (转)MySQL数据库命名规范及约定
一.[操作规范]1. 如无备注,则表中的第一个id字段一定是主键且为自动增长:2. 如无备注,则数值类型的字段请使用UNSIGNED属性:3. 如无备注,排序字段order_id在程序中默认使用降序排 ...
- java mail 使用 gmail smtp 发送邮件
smtp 服务器:smtp.gmail.com 使用ssl的端口:465 用户名:username@gmail.com 密码:password** 基本配置没有问题,关键在于Google对安全性要求非 ...
- Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值.字符和文件三个方面的测试. 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于 ...
- C#计算某个时间距离当前日期的天数
方法一: DateTime dt1 = Convert.ToDateTime("2013-09-30"); DateTime dt2 = DateTime.Now; int cou ...
- FLEX 网格布局及响应式处理
上一篇文章用Flex实现BorderLayout,这一章我们来实现常用的网格布局和响应式处理. 首先我们定义HTML结构,主Box为grid,每项为grid-cell,下面就是我们HTML代码结构. ...
- HTML5 input控件 placeholder属性
placeholder 属性提供可描述输入字段预期值的提示信息(hint),该提示会在输入字段为空时显示,并会在字段获得焦点时消失. <input placeholder="请输入姓名 ...
- Css 描点
<!DOCTYPE HTML> <html lang="en-US"> <head> <meta charset="UTF-8& ...
- php设计模式之简单工厂模式
①抽象基类:类中定义抽象一些方法,用以在子类中实现 ②继承自抽象基类的子类:实现基类中的抽象方法 ③工厂类:用以实例化所有相对应的子类 /** * * 定义个抽象的类,让子类去继承实现它 * */ a ...