POJ 1775 (ZOJ 2358) Sum of Factorials
Description
John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematician who made important contributions to the foundations of mathematics, logic, quantum physics,meteorology, science, computers, and game theory. He was noted for a phenomenal memory and the speed with which he absorbed ideas and solved problems. In 1925 he received a B.S. diploma in chemical engineering from Zurich Institute and in 1926 a Ph.D. in mathematics from the University of Budapest. His Ph.D. dissertation on set theory was an important contribution to the subject. At the age of 20, von Neumann proposed a new definition of ordinal numbers that was universally adopted. While still in his twenties, he made many contributions in both pure and applied mathematics that established him as a mathematician of unusual depth. His Mathematical Foundations of Quantum Mechanics (1932) built a solid framework for the new scientific discipline. During this time he also proved the mini-max theorem of GAME THEORY. He gradually expanded his work in game theory, and with coauthor Oskar Morgenstern he wrote Theory of Games and Economic Behavior (1944).
There are some numbers which can be expressed by the sum of factorials. For example 9,9=1!+2!+3! Dr. von Neumann was very interested in such numbers. So, he gives you a number n, and wants you to tell him whether or not the number can be expressed by the sum of some factorials.
Well, it’s just a piece of cake. For a given n, you’ll check if there are some xi, and let n equal to Σ1<=i<=txi!. (t >=1 1, xi >= 0, xi = xj iff. i = j). If the answer is yes, say “YES”; otherwise, print out “NO”.
Input
You will get several non-negative integer n (n <= 1,000,000) from input file. Each one is in a line by itself.
The input is terminated by a line with a negative integer.
Output
For each n, you should print exactly one word (“YES” or “NO”) in a single line. No extra spaces are allowed.
Sample Input
9
-1
Sample Output
YES
注意:0的阶乘是1;(输入0,输出NO)
不是输入-1结束,而是输入负数结束程序;
题目要求不是连续阶乘和;
例如:4=0!+1!+2!=1+1+2
输出 YES;
7=3!+1!;
输出 YES;
我这里的思路是:
从不大于n的最大数开始减,如果能减到n为0,输出YES,否则
输出NO。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int a[10];
void df(){
for(int i=1;i<10;i++){
a[i]=i*a[i-1];
}
}
int main()
{
a[0]=1;
df();
// for(int i=0;i<10;i++){
// printf("%d\n",a[i]);
// }
int n;
int sum;
while(scanf("%d",&n)==1&&n>=0){
sum=n;
if(n==0){
printf("NO\n");
continue;
}
int flag=0;
for(int i=9;i>=0;i--){
if(a[i]<=sum){
sum=sum-a[i];
// printf("i=%d,%d\n",i,a[i]);
}
if(sum==0){
printf("YES\n");
flag=1;
break;
}
}
if(flag==0)
printf("NO\n");
}
return 0;
}
POJ 1775 (ZOJ 2358) Sum of Factorials的更多相关文章
- poj 2246 (zoj 1094)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1094 ZOJ Problem Set - 1094 Matrix Chai ...
- POJ 2260(ZOJ 1949) Error Correction 一个水题
Description A boolean matrix has the parity property when each row and each column has an even sum, ...
- POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配
两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...
- poj 3122 (二分查找)
链接:http://poj.org/problem?id=3122 Pie Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1 ...
- poj3270 && poj 1026(置换问题)
| 1 2 3 4 5 6 | | 3 6 5 1 4 2 | 在一个置换下,x1->x2,x2->x3,...,xn->x1, 每一个置换都可以唯一的分解为若干个不交的循环 如上面 ...
- POJ 3252 (数位DP)
###POJ 3252 题目链接 ### 题目大意:给你一段区间 [Start,Finish] ,在这段区间中有多少个数的二进制表示下,0 的个数 大于等于 1 的个数. 分析: 1.很显然是数位DP ...
- poj 3335(半平面交)
链接:http://poj.org/problem?id=3335 //大牛们常说的测模板题 ------------------------------------------------- ...
- Sumdiv POJ - 1845 (逆元/分治)
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m ...
- Scout YYF I POJ - 3744(矩阵优化)
题意:一条路上有n个地雷,给出地雷的位置.某人从起点(位置1)出发,走一步的概率是p,走两步的概率是(1-p),然后问有多少概率走过这个雷区. 思路: 只要走过最后一个地雷就代表走过雷区了. 而每到 ...
随机推荐
- Linked Server for SQL Server 2012(x64) to Oracle Database 12c(x64)
因为把两台数据库装了同一台机机器上,所以没有安装oracle Client的部分,Oracle部分使用netca创建的Net Service Name,使用tnsping以及登入方式的确认用户权限的以 ...
- TP-LINK wr703n openwrt 挂载 U盘
1.首先设置好DNS 2.点SYSTEM 点SOFTWARE 更新软件列表 3.安装下列软件: block-mount kmod-usb-storage kmod-fs-ext4 e2fsprogs ...
- (正则表达式应用) 替换自闭合标签(self-closing tag)的method
var str = "<sup><div class=\"he's\"/></sup><span id=\"cs\&q ...
- Python:模块引用
#!/usr/bin/python3 #Filename function.py #导入模块 import sys #导入function.py#function.py 文件import functi ...
- PHP 内存不足
今天编写数据库备份类时,在运行的过程中,出现了内存不足的问题,提示:Fatal error: Allowed memory size of 25165824 bytes exhausted (trie ...
- 子网/ip/子网掩码
IP地址由网络地址和主机地址组成 而现在IP由“子网掩码”通过子网网络地 址细分出 A,B,C类更小的网络.这种方式 实际上就是将原来的A类,B类,C类等分类 中的的主机地址部分用作子网地址,可以 将 ...
- Linux 防火墙设置,禁止某个ip访问
service iptables status 查看防火墙状态 service iptables start 开启防火墙 service iptables ...
- Hibernate报错 ** is not mapping
使用easyui+struts+hibernate 新增加一个页面功能时,总是报错,后来发现是数据库语句,不能写表名称,而是要写映射的数据库实体类名 1.struts文件修改增加action < ...
- 移动端触摸滑动插件Swiper
移动端触摸滑动插件Swiper 04/02/2015 一.了解Swiper 目前移动端项目一般都需要具有触屏焦点图的效果,如果你也需要实现这一功能的话,Swiper是一个不错的选择. 1.他不需要加载 ...
- 使用SeaJS实现模块化JavaScript开发
前言 SeaJS是一个遵循CommonJS规范的JavaScript模块加载框架,可以实现JavaScript的模块化开发及加载机制.与jQuery等JavaScript框架不同,SeaJS不会扩展封 ...