Description

John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematician who made important contributions to the foundations of mathematics, logic, quantum physics,meteorology, science, computers, and game theory. He was noted for a phenomenal memory and the speed with which he absorbed ideas and solved problems. In 1925 he received a B.S. diploma in chemical engineering from Zurich Institute and in 1926 a Ph.D. in mathematics from the University of Budapest. His Ph.D. dissertation on set theory was an important contribution to the subject. At the age of 20, von Neumann proposed a new definition of ordinal numbers that was universally adopted. While still in his twenties, he made many contributions in both pure and applied mathematics that established him as a mathematician of unusual depth. His Mathematical Foundations of Quantum Mechanics (1932) built a solid framework for the new scientific discipline. During this time he also proved the mini-max theorem of GAME THEORY. He gradually expanded his work in game theory, and with coauthor Oskar Morgenstern he wrote Theory of Games and Economic Behavior (1944).

There are some numbers which can be expressed by the sum of factorials. For example 9,9=1!+2!+3! Dr. von Neumann was very interested in such numbers. So, he gives you a number n, and wants you to tell him whether or not the number can be expressed by the sum of some factorials.

Well, it’s just a piece of cake. For a given n, you’ll check if there are some xi, and let n equal to Σ1<=i<=txi!. (t >=1 1, xi >= 0, xi = xj iff. i = j). If the answer is yes, say “YES”; otherwise, print out “NO”.

Input

You will get several non-negative integer n (n <= 1,000,000) from input file. Each one is in a line by itself.

The input is terminated by a line with a negative integer.

Output

For each n, you should print exactly one word (“YES” or “NO”) in a single line. No extra spaces are allowed.

Sample Input

9

-1

Sample Output

YES

注意:0的阶乘是1;(输入0,输出NO)

不是输入-1结束,而是输入负数结束程序;

题目要求不是连续阶乘和;

例如:4=0!+1!+2!=1+1+2

输出 YES;

7=3!+1!;

输出 YES;

我这里的思路是:

从不大于n的最大数开始减,如果能减到n为0,输出YES,否则

输出NO。

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int a[10];
void df(){
for(int i=1;i<10;i++){
a[i]=i*a[i-1];
}
}
int main()
{
a[0]=1;
df();
// for(int i=0;i<10;i++){
// printf("%d\n",a[i]);
// }
int n;
int sum;
while(scanf("%d",&n)==1&&n>=0){
sum=n;
if(n==0){
printf("NO\n");
continue;
}
int flag=0;
for(int i=9;i>=0;i--){
if(a[i]<=sum){
sum=sum-a[i];
// printf("i=%d,%d\n",i,a[i]);
}
if(sum==0){
printf("YES\n");
flag=1;
break;
}
}
if(flag==0)
printf("NO\n");
}
return 0;
}

POJ 1775 (ZOJ 2358) Sum of Factorials的更多相关文章

  1. poj 2246 (zoj 1094)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1094 ZOJ Problem Set - 1094 Matrix Chai ...

  2. POJ 2260(ZOJ 1949) Error Correction 一个水题

    Description A boolean matrix has the parity property when each row and each column has an even sum, ...

  3. POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配

    两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...

  4. poj 3122 (二分查找)

    链接:http://poj.org/problem?id=3122 Pie Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1 ...

  5. poj3270 && poj 1026(置换问题)

    | 1 2 3 4 5 6 | | 3 6 5 1 4 2 | 在一个置换下,x1->x2,x2->x3,...,xn->x1, 每一个置换都可以唯一的分解为若干个不交的循环 如上面 ...

  6. POJ 3252 (数位DP)

    ###POJ 3252 题目链接 ### 题目大意:给你一段区间 [Start,Finish] ,在这段区间中有多少个数的二进制表示下,0 的个数 大于等于 1 的个数. 分析: 1.很显然是数位DP ...

  7. poj 3335(半平面交)

    链接:http://poj.org/problem?id=3335     //大牛们常说的测模板题 ------------------------------------------------- ...

  8. Sumdiv POJ - 1845 (逆元/分治)

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m ...

  9. Scout YYF I POJ - 3744(矩阵优化)

    题意:一条路上有n个地雷,给出地雷的位置.某人从起点(位置1)出发,走一步的概率是p,走两步的概率是(1-p),然后问有多少概率走过这个雷区. 思路: 只要走过最后一个地雷就代表走过雷区了. 而每到 ...

随机推荐

  1. # Day04-Android

    Day04-Android 标签(空格分隔): andrroid 1.制作界面 2.在写Activity. Logcat LayoutInflate把Xml转换纯成View的工具. 自定义吐司 Lay ...

  2. CSS3高性能动画

    CSS动画属性会触发整个页面的重排relayout.重绘repaint.重组recomposite Paint通常是其中最花费性能的,尽可能避免使用触发paint的CSS动画属性,在CSS动画中使用w ...

  3. Oracle: Oracle行转列、列转行的Sql语句总结

    例子原型: ' ; 运行结果如下: 一.多字段的拼接 将两个或者多个字段拼接成一个字段: ' ; 运行结果: 二.行转列 将某个字段的多行结果,拼接成一个字段,获取拼接的字符串[默认逗号隔开] ' ; ...

  4. GCDTimer

    #import <Foundation/Foundation.h> @interface JKTimerManager : NSObject + (instancetype)sharedT ...

  5. jQuery easyUI框架中经常出现的问题

    相信开发者对于我们jquery来说都不会陌生吧,jquery为我们的开发提供了很多各式各样的库,满足各种开发的需求,其中我们知道的有轻量级的,但是也有一些基于富客服端的一些重量级库,顾名思义,当我们在 ...

  6. 删除svn密码方法

    很多时候使用svn,我们需要切换svn账号,但是由于之前的账号已经选择了记住密码,那么我们应该如何删除svn密码来切换新的svn账号呢? 其实很简单,svn账号密码信息保存在电脑某一文件中,我们只要删 ...

  7. windows上SVN服务器以及客户端TortoiseSVN的安装配置

    (1)svn的安装 1. 下载软件:Setup-Subversion-1.7.5.msi,安装就很容易了,一路NEXT 2. 把SVN的bin文件夹路径添加到环境变量中 把svn安装目录下的bin路径 ...

  8. Linux的cat、more、less的区别

    cat命令功能用于显示整个文件的内容单独使用没有翻页功能因此经常和more命令搭配使用,cat命令还有就是将数个文件合并成一个文件的功能. more命令功能:让画面在显示满一页时暂停,此时可按空格健继 ...

  9. cookie : 存储数据

    cookie : 存储数据,当用户访问了某个网站(网页)的时候,我们就可以通过cookie来像访问者电脑上存储数据 1.不同的浏览器存放的cookie位置不一样,也是不能通用的 2.cookie的存储 ...

  10. js如何获取一个月的天数 data javascript

    js如何获取一个月的天数 function days(year,month){ var dayCount; now = new Date(year,month, 0); dayCount = now. ...