POJ 1775 (ZOJ 2358) Sum of Factorials
Description
John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematician who made important contributions to the foundations of mathematics, logic, quantum physics,meteorology, science, computers, and game theory. He was noted for a phenomenal memory and the speed with which he absorbed ideas and solved problems. In 1925 he received a B.S. diploma in chemical engineering from Zurich Institute and in 1926 a Ph.D. in mathematics from the University of Budapest. His Ph.D. dissertation on set theory was an important contribution to the subject. At the age of 20, von Neumann proposed a new definition of ordinal numbers that was universally adopted. While still in his twenties, he made many contributions in both pure and applied mathematics that established him as a mathematician of unusual depth. His Mathematical Foundations of Quantum Mechanics (1932) built a solid framework for the new scientific discipline. During this time he also proved the mini-max theorem of GAME THEORY. He gradually expanded his work in game theory, and with coauthor Oskar Morgenstern he wrote Theory of Games and Economic Behavior (1944).
There are some numbers which can be expressed by the sum of factorials. For example 9,9=1!+2!+3! Dr. von Neumann was very interested in such numbers. So, he gives you a number n, and wants you to tell him whether or not the number can be expressed by the sum of some factorials.
Well, it’s just a piece of cake. For a given n, you’ll check if there are some xi, and let n equal to Σ1<=i<=txi!. (t >=1 1, xi >= 0, xi = xj iff. i = j). If the answer is yes, say “YES”; otherwise, print out “NO”.
Input
You will get several non-negative integer n (n <= 1,000,000) from input file. Each one is in a line by itself.
The input is terminated by a line with a negative integer.
Output
For each n, you should print exactly one word (“YES” or “NO”) in a single line. No extra spaces are allowed.
Sample Input
9
-1
Sample Output
YES
注意:0的阶乘是1;(输入0,输出NO)
不是输入-1结束,而是输入负数结束程序;
题目要求不是连续阶乘和;
例如:4=0!+1!+2!=1+1+2
输出 YES;
7=3!+1!;
输出 YES;
我这里的思路是:
从不大于n的最大数开始减,如果能减到n为0,输出YES,否则
输出NO。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int a[10];
void df(){
for(int i=1;i<10;i++){
a[i]=i*a[i-1];
}
}
int main()
{
a[0]=1;
df();
// for(int i=0;i<10;i++){
// printf("%d\n",a[i]);
// }
int n;
int sum;
while(scanf("%d",&n)==1&&n>=0){
sum=n;
if(n==0){
printf("NO\n");
continue;
}
int flag=0;
for(int i=9;i>=0;i--){
if(a[i]<=sum){
sum=sum-a[i];
// printf("i=%d,%d\n",i,a[i]);
}
if(sum==0){
printf("YES\n");
flag=1;
break;
}
}
if(flag==0)
printf("NO\n");
}
return 0;
}
POJ 1775 (ZOJ 2358) Sum of Factorials的更多相关文章
- poj 2246 (zoj 1094)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1094 ZOJ Problem Set - 1094 Matrix Chai ...
- POJ 2260(ZOJ 1949) Error Correction 一个水题
Description A boolean matrix has the parity property when each row and each column has an even sum, ...
- POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配
两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...
- poj 3122 (二分查找)
链接:http://poj.org/problem?id=3122 Pie Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1 ...
- poj3270 && poj 1026(置换问题)
| 1 2 3 4 5 6 | | 3 6 5 1 4 2 | 在一个置换下,x1->x2,x2->x3,...,xn->x1, 每一个置换都可以唯一的分解为若干个不交的循环 如上面 ...
- POJ 3252 (数位DP)
###POJ 3252 题目链接 ### 题目大意:给你一段区间 [Start,Finish] ,在这段区间中有多少个数的二进制表示下,0 的个数 大于等于 1 的个数. 分析: 1.很显然是数位DP ...
- poj 3335(半平面交)
链接:http://poj.org/problem?id=3335 //大牛们常说的测模板题 ------------------------------------------------- ...
- Sumdiv POJ - 1845 (逆元/分治)
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m ...
- Scout YYF I POJ - 3744(矩阵优化)
题意:一条路上有n个地雷,给出地雷的位置.某人从起点(位置1)出发,走一步的概率是p,走两步的概率是(1-p),然后问有多少概率走过这个雷区. 思路: 只要走过最后一个地雷就代表走过雷区了. 而每到 ...
随机推荐
- (转)C# 中的委托和事件
来源:http://www.tracefact.net/CSharp-Programming/Delegates-and-Events-In-CSharp.aspx 引言 委托 和 事件在 .Net ...
- 如何写robots.txt?
robin 发表在 八月 2, 2006 在国内,网站管理者似乎对robots.txt并没有引起多大重视,应一些朋友之请求,今天想通过这篇文章来简单谈一下robots.txt的写作. robots.t ...
- oracle学习笔记2:创建修改表
1.创建表 CREATE TABLE ORDERINFO ( ORDERID NUMBER(*, 0) NOT NULL , ORDERCODE VARCHAR2(20 BYTE) NOT NULL ...
- linux启动黑屏或无法进入会话管理器
原因是因为更新软件时删除了/etc中的xserver配置文件,进入livecd将相关文件拷贝即可
- iOS中的几种定时器详解
在软件开发过程中,我们常常需要在某个时间后执行某个方法,或者是按照某个周期一直执行某个方法.在这个时候,我们就需要用到定时器. 然而,在iOS中有很多方法完成以上的任务,经过查阅资料,大概有三种方法: ...
- Lost connection to MySQL server at ‘reading initial communication packet', system error: 0 mysql远程连接问题
在用Navicat for MySQL远程连接mysql的时候,出现了 Lost connection to MySQL server at ‘reading initial communicatio ...
- PHP设计模式之:策略模式
<?phpabstract class Strategy{ public abstract function AlgorithmInterface();} class ConcreteSt ...
- php session 自定义的设置测试
<?php // ini_set('session.save_handler', 'user'); // 注意 set_session_save_handler() 一定要在 session_s ...
- [转] 小tip: 使用CSS将图片转换成模糊(毛玻璃)效果 ---张鑫旭
by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=3804 去年盛夏之时, ...
- PHP实战开发教程
对于PHP初学者来说,一上手就学习庞大的PHP语法无疑很打击自信心.其实即便是很熟练的程序员,也未必对所有的语法非常熟悉.通常熟练的程序员比普通的程序员的优势在于对基本语法的理解非常透彻,而且常用的一 ...