Description

给出两个n位10进制整数x和y,你需要计算x*y。

Input

第一行一个正整数n。第二行描述一个位数为n的正整数x。第三行描述一个位数为n的正整数y。

Output

输出一行,即x*y的结果。

Sample Input

1
3
4

Sample Output

12

数据范围:
n<=60000

HINT

 

Source

FFT裸题

具体见算导

code:

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 131072
#define pi 3.14159265358979323846
using namespace std;
char ch;
int m,n,ans[maxn];
bool ok;
struct comp{
double rea,ima;
void clear(){rea=ima=;}
comp operator +(const comp &x){return (comp){rea+x.rea,ima+x.ima};}
comp operator -(const comp &x){return (comp){rea-x.rea,ima-x.ima};}
comp operator *(const comp &x){return (comp){rea*x.rea-ima*x.ima,rea*x.ima+ima*x.rea};}
}a[maxn],b[maxn],c[maxn],tmp[maxn],w,wn;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
void read(comp *a){
for (int i=m-;i>=;i--){
for (ch=getchar();!isdigit(ch);ch=getchar());
a[i].rea=ch-'';
}
}
void write(int *a){
int i;
for (i=n-;i>=&&!a[i];i--);
if (i<){puts("");return;}
for (;i>=;i--) printf("%d",(int)a[i]);
puts("");
}
void fft(comp *a,int st,int siz,int step,int op){
if (siz==) return;
fft(a,st,siz>>,step<<,op),fft(a,st+step,siz>>,step<<,op);
int x=st,x1=st,x2=st+step;
w=(comp){,},wn=(comp){cos(op**pi/siz),sin(op**pi/siz)};
for (int i=;i<(siz>>);i++,x+=step,x1+=(step<<),x2+=(step<<),w=w*wn)
tmp[x]=a[x1]+(w*a[x2]),tmp[x+(siz>>)*step]=a[x1]-(w*a[x2]);
for (int i=st;siz;i+=step,siz--) a[i]=tmp[i];
}
int main(){
read(m),n=;
while (n<(m<<)) n<<=;
read(a),read(b);
fft(a,,n,,),fft(b,,n,,);
for (int i=;i<n;i++) c[i]=a[i]*b[i];
fft(c,,n,,-);
for (int i=;i<n;i++) ans[i]=(int)round(c[i].rea/(1.0*n));
for (int i=;i<n;i++) ans[i+]+=ans[i]/,ans[i]%=;
write(ans);
system("pause");
return ;
}

FFT快速傅立叶的更多相关文章

  1. BZOJ 2179: FFT快速傅立叶

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2923  Solved: 1498[Submit][Status][Di ...

  2. 【bzoj2179】FFT快速傅立叶 FFT模板

    2016-06-01  09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...

  3. 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3308  Solved: 1720 Description 给出两个n位 ...

  4. bzoj 2179: FFT快速傅立叶 -- FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...

  5. 【BZOJ2179】FFT快速傅立叶

    [BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...

  6. [bzoj2179]FFT快速傅立叶_FFT

    FFT快速傅立叶 bzoj-2179 题目大意:给出两个n位10进制整数x和y,你需要计算x*y. 注释:$1\le n\le 6\times 10^4$. 想法: $FFT$入门题. $FFT$实现 ...

  7. 【CodeVS 3123】高精度练习之超大整数乘法 &【BZOJ 2197】FFT快速傅立叶

    第一次写法法塔,,,感到威力无穷啊 看了一上午算导就当我看懂了?PS:要是机房里能有个清净的看书环境就好了 FFT主要是用了巧妙的复数单位根,复数单位根在复平面上的对称性使得快速傅立叶变换的时间复杂度 ...

  8. BZOJ 2179 FFT快速傅立叶 题解

    bzoj 2179 Description 给出两个n位10进制整数x和y,你需要计算x*y. [题目分析] 高精裸题.练手. [代码] 1.手动高精 #include<cstdio> # ...

  9. FFT快速傅立叶变换的工作原理

    实数DFT,复数DFT,FFTFFT是计算DFT的快速算法,但是它是基于复数的,所以计算实数DFT的时候需要将其转换为复数的格式,下图展示了实数DFT和虚数DFT的情况,实数DFT将时域中N点信号转换 ...

  10. HDU-1402 A * B Problem Plus FFT(快速傅立叶变化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1402 一般的的大数乘法都是直接模拟乘法演算过程,复杂度O(n^2),对于这题来说会超时.乘法的过程基本 ...

随机推荐

  1. python 解析 配置文件

    资料: https://docs.python.org/3/library/configparser.html 环境 python 3.4.4 RawConfigParser方式 example.cf ...

  2. Rules

    我们之前处理异常的时候用到过Rules,当然还有很多其他规则.Rules允许弹性的添加或者重定义测试方法的行为.测试者可以重复使用或者扩展下面的某一个Rules,也可以写一个属于自己的规则. 这里先展 ...

  3. 理解RESTful架构(转)

    理解RESTful架构   作者: 阮一峰 http://www.ruanyifeng.com/blog/2011/09/restful 越来越多的人开始意识到,网站即软件,而且是一种新型的软件. 这 ...

  4. RabbitMQ挂掉问题处理

    开发环境中的rabbitmq总是会挂掉,rabbitmq的执行都是ssh远程登录执行命令: rabbitmq-server & 认为加了&,进程会在后台执行不会受到终端的影响.所以不知 ...

  5. C#中格式化数据的输出

    格式项都采用如下形式: {index[,alignment][:formatString]} 其中"index"指索引占位符,这个肯定都知道: ",alignment&q ...

  6. codevs 1994 排队 排列组合+高精度

    /* 数学题0.0 最后答案:A(n,n)*A(n+1,2)*A(n+3,m)+A(n,n)*C(m,1)*A(2,2)*C(n+1,1)*A(n+2,m-1); 简单解释一下 +之前的很显然 先排男 ...

  7. sql server 各种函数

    SQL2008 表达式:是常量.变量.列或函数等与运算符的任意组合. 1. 字符串函数 函数 名称 参数 示例 说明 ascii(字符串表达式) select ascii('abc') 返回 97 返 ...

  8. AES对称加密算法

    package cn.jsonlu.passguard.utils; import org.apache.commons.codec.binary.Base64; import javax.crypt ...

  9. Hibernate HQL查询:

    Hibernate HQL查询:Criteria查询对查询条件进行了面向对象封装,符合编程人员的思维方式,不过HQL(Hibernate Query Lanaguage)查询提供了更加丰富的和灵活的查 ...

  10. ASP.NET MVC 几种 Filter 的执行过程源码解析

    一.前言 之前也阅读过MVC的源码,并了解过各个模块的运行原理和执行过程,但都没有形成文章(所以也忘得特别快),总感觉分析源码是大神的工作,而且很多 人觉得平时根本不需要知道这些,会用就行了.其实阅读 ...