数据源格式描述:

输入t1.txt源数据,数据文件分隔符”*&*”,字段说明如下:

字段序号 字段英文名称 字段中文名称 字段类型 字段长度
1 TIME_ID 时间(到时) 字符型 12
2 Session 会话时长 数值型 8
3 MSISDN 用户号码 字符型 11
4 SP_DOMAIN SP域名 数值型 64
5 USER_AGENT_ORIGN 终端字串 字符型 128
6 USER_AGENT 终端类别 字符型 64
7 UPSTREAM_VOL 上行流量 数值型 8
8 DOWNSTREAM_VOL 下行流量 数值型 8
9 URL_CNT 访问次数 数值型 20

用mapreduce实现单表汇总:

在数据源的基础上,根据终端类型汇总出总流量及访问次数。汇总模型字段说明如下:

字段序号 字段英文名称 字段中文名称 字段类型 字段长度
1 USER_AGENT 终端类型 字符型
2 TOT_FLUX 总流量 数值型 30
3 URL_CNT 访问次数 数值型 30

代码如下:

package mianshi;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;

import com.google.protobuf.TextFormat;

public class Test1 {

/**
     * @param args
     * @throws IOException
     * @throws InterruptedException
     * @throws ClassNotFoundException
     */
    public static void main(String[] args) throws Exception {
        //创建配置文件
        Configuration conf=new Configuration();
        //创建job
        Job job = new Job(conf,Test1.class.getName());
        //设置jar包运行
        job.setJarByClass(Test1.class);
        //设置输入路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        //设置输入格式
        job.setInputFormatClass(TextInputFormat.class);
        //设置自定义Mapper
        job.setMapperClass(MyMapper.class);
        //设置Map输出的Value类型,也就是V2
        job.setMapOutputValueClass(Model.class);
        //设置Map输出的Key类型,也就是K2
        job.setMapOutputKeyClass(Text.class);
        //设置分区类型
        job.setPartitionerClass(HashPartitioner.class);
        //设置Rudece任务数
        job.setNumReduceTasks(1);
        //设置自定义Reduce类
        job.setReducerClass(MyReducer.class);
        //设置输出K3的类型
        job.setOutputKeyClass(Text.class);
        //设置输出的V3类型
        job.setOutputValueClass(Model.class);
        //设置输出的格式
        job.setOutputFormatClass(TextOutputFormat.class);
        //指定输出路径
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        //提交job
        job.waitForCompletion(true);

}
    static class MyMapper extends Mapper<LongWritable, Text, Text, Model>{
        @Override
        protected void map(LongWritable k1, Text v1,Context context)
                throws IOException, InterruptedException {
            /**
             * 切割字符串有点意思!
             * “*”是特殊字符,需要用[]
             * "&"需要用\\转义
             *
             *    
             */
            String[] split = v1.toString().split("[*]\\&[*]");
            Text user_agent = new Text(split[5]);
            Long tot_flux = new Long(split[6])+new Long(split[7]);
            Long url_cnt = new Long(split[8]);
            Model v2 = new Model(tot_flux, url_cnt);
            context.write(user_agent, v2);
           
        }
    }
   
    static class MyReducer extends Reducer<Text, Model, Text, Model>{
       
        @Override
        protected void reduce(Text k2, Iterable<Model> v2s,Context context)
                throws IOException, InterruptedException {
           
            //定义计数器
            long sum_flux =0L;
            long sum_url = 0L;
            for(Model model : v2s){
                sum_flux += model.tot_flux;
                sum_url += model.url_cnt;
            }
            Model v3 = new Model(sum_flux,sum_url);
            context.write(k2, v3);
        }
       
    }

}

/**
* 自定义类型必须实现Writable
* @author Sky
*
*/
class Model implements Writable{
   
    long tot_flux;
    long url_cnt;
   
    public Model(){}
    public Model(Long tot_flux,Long url_cnt){
        this.tot_flux = tot_flux;
        this.url_cnt = url_cnt;
    }

public void write(DataOutput out) throws IOException {
        //序列化出去
        out.writeLong(tot_flux);
        out.writeLong(url_cnt);
    }

public void readFields(DataInput in) throws IOException {
        //和序列化出去的一样
        this.tot_flux = in.readLong();
        this.url_cnt = in.readLong();
       
    }
   
    //必须覆写toString方法,否则输出的值是内存值
    @Override
    public String toString() {
        return tot_flux+"\t"+url_cnt;
    }
   
   
}

文章参考论坛:超人hadoop网络学院论坛

Hadoop工程师面试题(1)--MapReduce实现单表汇总统计的更多相关文章

  1. Hadoop on Mac with IntelliJ IDEA - 8 单表关联NullPointerException

    简化陆喜恒. Hadoop实战(第2版)5.4单表关联的代码时遇到空指向异常,经分析是逻辑问题,在此做个记录. 环境:Mac OS X 10.9.5, IntelliJ IDEA 13.1.5, Ha ...

  2. Hadoop案例(七)MapReduce中多表合并

    MapReduce中多表合并案例 一.案例需求 订单数据表t_order: id pid amount 1001 01 1 1002 02 2 1003 03 3 订单数据order.txt 商品信息 ...

  3. 20180518VSTO多簿单表汇总外接程序按钮

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsof ...

  4. 20180518VSTO多簿单表汇总

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsof ...

  5. Hadoop阅读笔记(三)——深入MapReduce排序和单表连接

    继上篇了解了使用MapReduce计算平均数以及去重后,我们再来一探MapReduce在排序以及单表关联上的处理方法.在MapReduce系列的第一篇就有说过,MapReduce不仅是一种分布式的计算 ...

  6. MapReduce应用案例--单表关联

    1. 实例描述 单表关联这个实例要求从给出的数据中寻找出所关心的数据,它是对原始数据所包含信息的挖掘. 实例中给出child-parent 表, 求出grandchild-grandparent表. ...

  7. Web前端开发工程师面试题

    Web前端开发工程师面试题1.说说css的优先级?2.在移动端中,常常使用tap作为点击事件,好处是?会带来什么问题?3.原生JS的window,onload与Jquery的$(document).r ...

  8. Hadoop介绍及最新稳定版Hadoop 2.4.1下载地址及单节点安装

     Hadoop介绍 Hadoop是一个能对大量数据进行分布式处理的软件框架.其基本的组成包括hdfs分布式文件系统和可以运行在hdfs文件系统上的MapReduce编程模型,以及基于hdfs和MapR ...

  9. MapReduce编程系列 — 5:单表关联

    1.项目名称: 2.项目数据: chile    parentTom    LucyTom    JackJone    LucyJone    JackLucy    MaryLucy    Ben ...

随机推荐

  1. [Python][flask][flask-wtf]关于flask-wtf中API使用实例教程

    简介:简单的集成flask,WTForms,包括跨站请求伪造(CSRF),文件上传和验证码. 一.安装(Install) 此文仍然是Windows操作系统下的教程,但是和linux操作系统下的运行环境 ...

  2. C++ 实现设计模式之观察者模式

    1. 什么是观察者模式? 观察者模式(有时又被称为发布-订阅Subscribe>模式.模型-视图View>模式.源-收听者Listener>模式或从属者模式)是软件设计模式的一种.在 ...

  3. Java集合Map接口与Map.Entry学习

    Java集合Map接口与Map.Entry学习 Map接口不是Collection接口的继承.Map接口用于维护键/值对(key/value pairs).该接口描述了从不重复的键到值的映射. (1) ...

  4. WPF获取控件的句柄

    在WinForm中,获得句柄是一件很容易的事情,This.Handle或者Control.Handle就可以,最近在WPF的开发中发现找不到这个属性,一番查找资料后找到了两种方式. 1,使用Windo ...

  5. nodejs基础安装

    安装Nodejs需要从官网上下载一个最新的安装包,运行.我这里是win764位系统. 下载版本6.5.0 由于去外国的镜像上下载东西比较慢,淘宝为我们准备了国内的镜像.我们需要安装国内镜像的使用工具. ...

  6. MongoDB应用详解

    mongodb是一个用来存储管理数据的软件 他是一个 c/s 架构的软件,是一个网络类型的软件如果要是使用mongodb的话,首先需要开启mongodb的服务端,然后通过客户端软件去连接服务器 1.要 ...

  7. SQL Server 修改排序规则

    Net stop mssqlserver Setup /QUIET /ACTION=REBUILDDATABASE /instancename=mssqlserver /SQLSYSADMINACCO ...

  8. 显示 EXCEL 的页签列表

    如果你的EXCEL表有很多页签,反复点击左右箭头可能会很费时间. 不妨试试在 左箭头 或者 右箭头 上点击 右键,会有页签列表弹出.

  9. [转载]C#字符串加密和解密

    using System.Security.Cryptography; using System.IO; //默认密钥向量 private static byte[] Keys = { 0x12, 0 ...

  10. php截取小时和分钟,在进行和其它时间段的比较

    用php截取时间的小时和分钟,然后判断这个时间是不是在 8:00到11:30之间,用php应该怎么写? date_default_timezone_set("Asia/Shanghai&qu ...