数据源格式描述:

输入t1.txt源数据,数据文件分隔符”*&*”,字段说明如下:

字段序号 字段英文名称 字段中文名称 字段类型 字段长度
1 TIME_ID 时间(到时) 字符型 12
2 Session 会话时长 数值型 8
3 MSISDN 用户号码 字符型 11
4 SP_DOMAIN SP域名 数值型 64
5 USER_AGENT_ORIGN 终端字串 字符型 128
6 USER_AGENT 终端类别 字符型 64
7 UPSTREAM_VOL 上行流量 数值型 8
8 DOWNSTREAM_VOL 下行流量 数值型 8
9 URL_CNT 访问次数 数值型 20

用mapreduce实现单表汇总:

在数据源的基础上,根据终端类型汇总出总流量及访问次数。汇总模型字段说明如下:

字段序号 字段英文名称 字段中文名称 字段类型 字段长度
1 USER_AGENT 终端类型 字符型
2 TOT_FLUX 总流量 数值型 30
3 URL_CNT 访问次数 数值型 30

代码如下:

package mianshi;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;

import com.google.protobuf.TextFormat;

public class Test1 {

/**
     * @param args
     * @throws IOException
     * @throws InterruptedException
     * @throws ClassNotFoundException
     */
    public static void main(String[] args) throws Exception {
        //创建配置文件
        Configuration conf=new Configuration();
        //创建job
        Job job = new Job(conf,Test1.class.getName());
        //设置jar包运行
        job.setJarByClass(Test1.class);
        //设置输入路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        //设置输入格式
        job.setInputFormatClass(TextInputFormat.class);
        //设置自定义Mapper
        job.setMapperClass(MyMapper.class);
        //设置Map输出的Value类型,也就是V2
        job.setMapOutputValueClass(Model.class);
        //设置Map输出的Key类型,也就是K2
        job.setMapOutputKeyClass(Text.class);
        //设置分区类型
        job.setPartitionerClass(HashPartitioner.class);
        //设置Rudece任务数
        job.setNumReduceTasks(1);
        //设置自定义Reduce类
        job.setReducerClass(MyReducer.class);
        //设置输出K3的类型
        job.setOutputKeyClass(Text.class);
        //设置输出的V3类型
        job.setOutputValueClass(Model.class);
        //设置输出的格式
        job.setOutputFormatClass(TextOutputFormat.class);
        //指定输出路径
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        //提交job
        job.waitForCompletion(true);

}
    static class MyMapper extends Mapper<LongWritable, Text, Text, Model>{
        @Override
        protected void map(LongWritable k1, Text v1,Context context)
                throws IOException, InterruptedException {
            /**
             * 切割字符串有点意思!
             * “*”是特殊字符,需要用[]
             * "&"需要用\\转义
             *
             *    
             */
            String[] split = v1.toString().split("[*]\\&[*]");
            Text user_agent = new Text(split[5]);
            Long tot_flux = new Long(split[6])+new Long(split[7]);
            Long url_cnt = new Long(split[8]);
            Model v2 = new Model(tot_flux, url_cnt);
            context.write(user_agent, v2);
           
        }
    }
   
    static class MyReducer extends Reducer<Text, Model, Text, Model>{
       
        @Override
        protected void reduce(Text k2, Iterable<Model> v2s,Context context)
                throws IOException, InterruptedException {
           
            //定义计数器
            long sum_flux =0L;
            long sum_url = 0L;
            for(Model model : v2s){
                sum_flux += model.tot_flux;
                sum_url += model.url_cnt;
            }
            Model v3 = new Model(sum_flux,sum_url);
            context.write(k2, v3);
        }
       
    }

}

/**
* 自定义类型必须实现Writable
* @author Sky
*
*/
class Model implements Writable{
   
    long tot_flux;
    long url_cnt;
   
    public Model(){}
    public Model(Long tot_flux,Long url_cnt){
        this.tot_flux = tot_flux;
        this.url_cnt = url_cnt;
    }

public void write(DataOutput out) throws IOException {
        //序列化出去
        out.writeLong(tot_flux);
        out.writeLong(url_cnt);
    }

public void readFields(DataInput in) throws IOException {
        //和序列化出去的一样
        this.tot_flux = in.readLong();
        this.url_cnt = in.readLong();
       
    }
   
    //必须覆写toString方法,否则输出的值是内存值
    @Override
    public String toString() {
        return tot_flux+"\t"+url_cnt;
    }
   
   
}

文章参考论坛:超人hadoop网络学院论坛

Hadoop工程师面试题(1)--MapReduce实现单表汇总统计的更多相关文章

  1. Hadoop on Mac with IntelliJ IDEA - 8 单表关联NullPointerException

    简化陆喜恒. Hadoop实战(第2版)5.4单表关联的代码时遇到空指向异常,经分析是逻辑问题,在此做个记录. 环境:Mac OS X 10.9.5, IntelliJ IDEA 13.1.5, Ha ...

  2. Hadoop案例(七)MapReduce中多表合并

    MapReduce中多表合并案例 一.案例需求 订单数据表t_order: id pid amount 1001 01 1 1002 02 2 1003 03 3 订单数据order.txt 商品信息 ...

  3. 20180518VSTO多簿单表汇总外接程序按钮

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsof ...

  4. 20180518VSTO多簿单表汇总

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsof ...

  5. Hadoop阅读笔记(三)——深入MapReduce排序和单表连接

    继上篇了解了使用MapReduce计算平均数以及去重后,我们再来一探MapReduce在排序以及单表关联上的处理方法.在MapReduce系列的第一篇就有说过,MapReduce不仅是一种分布式的计算 ...

  6. MapReduce应用案例--单表关联

    1. 实例描述 单表关联这个实例要求从给出的数据中寻找出所关心的数据,它是对原始数据所包含信息的挖掘. 实例中给出child-parent 表, 求出grandchild-grandparent表. ...

  7. Web前端开发工程师面试题

    Web前端开发工程师面试题1.说说css的优先级?2.在移动端中,常常使用tap作为点击事件,好处是?会带来什么问题?3.原生JS的window,onload与Jquery的$(document).r ...

  8. Hadoop介绍及最新稳定版Hadoop 2.4.1下载地址及单节点安装

     Hadoop介绍 Hadoop是一个能对大量数据进行分布式处理的软件框架.其基本的组成包括hdfs分布式文件系统和可以运行在hdfs文件系统上的MapReduce编程模型,以及基于hdfs和MapR ...

  9. MapReduce编程系列 — 5:单表关联

    1.项目名称: 2.项目数据: chile    parentTom    LucyTom    JackJone    LucyJone    JackLucy    MaryLucy    Ben ...

随机推荐

  1. python初准备:安装easy_install和pip

    安装easy_install wget http://peak.telecommunity.com/dist/ez_setup.py python ez_setup.py 安装pip wget htt ...

  2. 2014年辛星完全解读Javascript第二节

    本小节我们讲解一下Javascript的语法,虽然js语言非常简单,它的语法也相对好学一些,但是不学总之还是不会的,因此,我们来一探究竟把. ********注释************* 1.我们通 ...

  3. 关于LookAt

    Transform.LookAt 注视 function LookAt (target : Transform, worldUp : Vector3 = Vector3.up) : void 旋转物体 ...

  4. Memcache的部署和使用

    一.memcache简介 Memcache是danga.com的一个项目,最早是为 LiveJournal 服务的,目前全世界不少人使用这个缓存项目来构建自己大负载的网站,来分担数据库的压力. Mem ...

  5. java 中 sleep(1000) 和 wait(1000) 的区别?

    1.首先 sleep 方法是Thread类中的静态方法,他的作用是使当前线程暂时睡眠指定的时间,可以不用放在synchronized方法或者代码块中,但是 wait 方法是Object类的方法,它是使 ...

  6. Nhibernate 一对多,多对一配置

    先来分析下问题,这里有两张表:Users(用户表) U和PersonalDynamic(用户动态表) PD,其中PD表的UserId对应U表的Id 如图: 现在映射这两张表: 如图: User.hbm ...

  7. Portal相关技术及架构

    Portal以用户为中心,提供统一的用户登录,实现信息的集中访问,集成了办公商务一体的工作流环境.利用Portal技术,可以方便地将员工所需要的,来源于各种渠道的信息资料集成在一个统一的桌面视窗之内. ...

  8. Javascript编程模式(JavaScript Programming Patterns)Part 2.(高级篇)

    模块编程模式的启示(Revealing Module Pattern) 客户端对象(Custom Objects) 懒函数定义(Lazy Function Definition) Christian  ...

  9. LINUX Shell 下求两个文件交集和差集的办法

    http://blog.csdn.net/autofei/article/details/6579320 假设两个文件FILE1和FILE2用集合A和B表示,FILE1内容如下: a b c e d ...

  10. 服务器部署_centos 安装jdk手记

    1. 下载jdk略. 2. 将jdk相关文件目录放到指定目录 (1) 创建jdk目录 /usr/java/jdk7 mkdir -p /usr/java/jdk7 (2) 解压缩jdk压缩包,并移动至 ...