Marcin Dymczyk, Igor Gilitschenski, Juan Nieto, Simon Lynen, Bernhard Zeis, and Roland Siegwart

LandmarkBoost: Efficient Visual Context Classifiers for Robust Localization

LandmarkBoost:用于鲁棒定位的高效的视觉上下文分类器
Abstract—The growing popularity of autonomous systems creates a need for reliable and efficient metric pose retrieval algorithms. Currently used approaches tend to rely on nearest neighbor search of binary descriptors to perform the 2D3D matching and guarantee realtime capabilities on mobile platforms. These methods struggle, however, with the growing size of the map, changes in viewpoint or appearance, and visual aliasing present in the environment. The rigidly defined descriptor patterns only capture a limited neighborhood of the keypoint and completely ignore the overall visual context.
We propose LandmarkBoost – an approach that, in contrast to the conventional 2D-3D matching methods, casts the search problem as a landmark classification task. We use a boosted classifier to classify landmark observations and directly obtain correspondences as classifier scores. We also introduce a formulation of visual context that is flexible, efficient to compute, and can capture relationships in the entire image plane. The original binary descriptors are augmented with contextual information and informative features are selected by the boosting framework. Through detailed experiments, we evaluate the retrieval quality and performance of LandmarkBoost, demonstrating that it outperforms common state-of-theart descriptor matching methods.
自治系统的日益普及产生了对可靠和有效的度量姿势检索算法的需求。当前使用的方法倾向于依赖二进制描述符的最近邻搜索来执行2D3D匹配并保证移动平台上的实时能力。然而,这些方法与地图的大小增加,视点或外观的变化以及环境中存在的视觉混叠相矛盾。
我们提出LandmarkBoost--与传统的2D-3D匹配方法相比,这种方法将搜索问题作为标志性的分类任务。

我们使用提升的分类器对具有里程碑意义的观察进行分类,并直接获得对应关系作为分类分数。我们还介绍了一种灵活的视觉上下文,能够有效地计算,并且可以捕捉整个图像平面中的关系。 原始二进制描述符用上下文信息增强,并且增强框架选择信息特征。通过详细的实验,我们评估了LandmarkBoost的检索质量和性能,证明它优于常见的描述符匹配方法。

 

泡泡一分钟:LandmarkBoost: Efficient Visual Context Classifiers for Robust Localization的更多相关文章

  1. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

  2. 论文阅读笔记二十:LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation(CVPR2017)

    源文网址:https://arxiv.org/abs/1707.03718 tensorflow代码:https://github.com/luofan18/linknet-tensorflow 基于 ...

  3. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  4. 泡泡一分钟:Fast and Robust Initialization for Visual-Inertial SLAM

    张宁  Fast and Robust Initialization for Visual-Inertial SLAM链接:https://pan.baidu.com/s/1cdkuHdkSi9x7l ...

  5. 泡泡一分钟:Robust and Fast 3D Scan Alignment Using Mutual Information

    Robust and Fast 3D Scan Alignment Using Mutual Information 使用互信息进行稳健快速的三维扫描对准 https://arxiv.org/pdf/ ...

  6. 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...

  7. 泡泡一分钟:Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation Using Minimal Solutions

    张宁 Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation ...

  8. 泡泡一分钟:Context-Aware Modelling for Augmented Reality Display Behaviour

    张宁 Context-Aware Modelling for Augmented Reality Display Behaviour链接:https://pan.baidu.com/s/1RpX6kt ...

  9. 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms

    Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...

随机推荐

  1. 「NOI2012」骑行川藏

    「NOI2012」骑行川藏 题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨. 川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的 ...

  2. bugzilla权限说明

    admin:Administrators权限   bz_canusewhineatothers:可定期向其它用户发送有关bug的邮件   bz_canusewhines: 用户在这个组,才能向其发送上 ...

  3. win 10 VMware与Hyper-v共存

    管理员身份运行命令提示符 cmd bcdedit /copy {current} /d "Windows10 no Hyper-V bcdedit /set {XXXXXXXX-XXXX-X ...

  4. 从http简介到网络分层及web架构

    浏览器发起HTTP请求的典型场景 a stateless application-level request/response protocol that uses extensible semant ...

  5. Continuous Subarray Sum II

    Description Given an circular integer array (the next element of the last element is the first eleme ...

  6. Intel 8086 CPU

    一.8086概述 Intel8086拥有四个16位的通用寄存器,也能够当作八个8位寄存器来存取,以及四个16位索引寄存器(包含了堆栈指标).资料寄存器通常由指令隐含地使用,针对暂存值需要复杂的寄存器配 ...

  7. BCB key事件中判断Shift、Alt、Ctrl状态

    BCB key事件中判断Shift.Alt.Ctrl状态: 类似此事件中 void __fastcall TForm1::keydown(TObject *Sender, WORD &Key, ...

  8. Vim颜色配置

    最近迷上了Vim 主要原因是可以装逼 不过话说它自带的配色里面也就只有一个evening能勉强满足我的审美 于是我花了大概几天的时间翻了些百度贴吧,或者自己手动改属性后面的配色来实验这个属性到底对应哪 ...

  9. P5590 【赛车游戏】

    果然我还是太\(Naive\)了 首先有一些点/边其实是没有意义的,如果从1出发不能到该点或者从该点不能到n,这个点就可以不用管了.这个过程可以用正反两边\(dfs/bfs\)实现 然后删掉那些点之后 ...

  10. Filter中实现页面转发

    在过滤器中实现页面转发时,报错 java.lang.IllegalStateException:Cannot forward after response has been committed 转发代 ...