Marcin Dymczyk, Igor Gilitschenski, Juan Nieto, Simon Lynen, Bernhard Zeis, and Roland Siegwart

LandmarkBoost: Efficient Visual Context Classifiers for Robust Localization

LandmarkBoost:用于鲁棒定位的高效的视觉上下文分类器
Abstract—The growing popularity of autonomous systems creates a need for reliable and efficient metric pose retrieval algorithms. Currently used approaches tend to rely on nearest neighbor search of binary descriptors to perform the 2D3D matching and guarantee realtime capabilities on mobile platforms. These methods struggle, however, with the growing size of the map, changes in viewpoint or appearance, and visual aliasing present in the environment. The rigidly defined descriptor patterns only capture a limited neighborhood of the keypoint and completely ignore the overall visual context.
We propose LandmarkBoost – an approach that, in contrast to the conventional 2D-3D matching methods, casts the search problem as a landmark classification task. We use a boosted classifier to classify landmark observations and directly obtain correspondences as classifier scores. We also introduce a formulation of visual context that is flexible, efficient to compute, and can capture relationships in the entire image plane. The original binary descriptors are augmented with contextual information and informative features are selected by the boosting framework. Through detailed experiments, we evaluate the retrieval quality and performance of LandmarkBoost, demonstrating that it outperforms common state-of-theart descriptor matching methods.
自治系统的日益普及产生了对可靠和有效的度量姿势检索算法的需求。当前使用的方法倾向于依赖二进制描述符的最近邻搜索来执行2D3D匹配并保证移动平台上的实时能力。然而,这些方法与地图的大小增加,视点或外观的变化以及环境中存在的视觉混叠相矛盾。
我们提出LandmarkBoost--与传统的2D-3D匹配方法相比,这种方法将搜索问题作为标志性的分类任务。

我们使用提升的分类器对具有里程碑意义的观察进行分类,并直接获得对应关系作为分类分数。我们还介绍了一种灵活的视觉上下文,能够有效地计算,并且可以捕捉整个图像平面中的关系。 原始二进制描述符用上下文信息增强,并且增强框架选择信息特征。通过详细的实验,我们评估了LandmarkBoost的检索质量和性能,证明它优于常见的描述符匹配方法。

 

泡泡一分钟:LandmarkBoost: Efficient Visual Context Classifiers for Robust Localization的更多相关文章

  1. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

  2. 论文阅读笔记二十:LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation(CVPR2017)

    源文网址:https://arxiv.org/abs/1707.03718 tensorflow代码:https://github.com/luofan18/linknet-tensorflow 基于 ...

  3. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  4. 泡泡一分钟:Fast and Robust Initialization for Visual-Inertial SLAM

    张宁  Fast and Robust Initialization for Visual-Inertial SLAM链接:https://pan.baidu.com/s/1cdkuHdkSi9x7l ...

  5. 泡泡一分钟:Robust and Fast 3D Scan Alignment Using Mutual Information

    Robust and Fast 3D Scan Alignment Using Mutual Information 使用互信息进行稳健快速的三维扫描对准 https://arxiv.org/pdf/ ...

  6. 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...

  7. 泡泡一分钟:Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation Using Minimal Solutions

    张宁 Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation ...

  8. 泡泡一分钟:Context-Aware Modelling for Augmented Reality Display Behaviour

    张宁 Context-Aware Modelling for Augmented Reality Display Behaviour链接:https://pan.baidu.com/s/1RpX6kt ...

  9. 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms

    Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...

随机推荐

  1. HDU - 6125: Free from square (状压DP+分组背包)

    problem:给定N,K.表示你有数1到N,让你最多选择K个数,问有多少种方案,使得选择的数的乘积无平方因子数.N,K<500: solution:显然可以状压DP做,但是500以内的素数还是 ...

  2. HP DL388 Gen9 Raid P440ar 工具

    HP DL388 Gen9 服务器raid升级P440ar,原先的hpacucli 不能使用,新的工具为hpssacl hpssacli-2.10-14.0.x86_64.rpm 下载地址:wget ...

  3. CSS hack整理

    浏览器的兼容性一直是个头疼的问题,使用“欺骗”技术可使各个浏览器效果一致,花了些时间整理了各个浏览器的HACK,主要包括IE系列和最新版本的Chrome.Safari.Firefox. Opera,比 ...

  4. fread/IO 模板

    namespace Fread { char cb[1<<15],*cs,*ct; #define getc (cs==ct&&(ct=(cs=cb)+fread(cb,1 ...

  5. C#多线程代码示例

    using System; using System.Threading; namespace MultiThreadDemo { class Program { public static void ...

  6. Storm 安装时 部分supervisor启动成功,并不在web ui上显示

    今天帮公司搭建集群时,发现启动了三个Supervisor 发现只有一个显示在Web UI 上. 于是我就简单地检查了下另外两台没有启动的 storm supervisor的日志, 发现没有报出什么异常 ...

  7. 在CentOS7上面搭建GitLab服务器

    首先要在CentOS系统上面安装所需的依赖:ssh.防火墙.postfix(用于邮件通知).wegt,以下这些命令也会打开系统防火墙中的HTTP和SSH端口访问. 1.安装SSH协议 安装命令:sud ...

  8. 爬虫基础以及一个简单的实例(requests,re)

    最近在看爬虫方面的知识,看到崔庆才所著的<Python3网络爬虫开发实战>一书讲的比较系统,果断入手学习.下面根据书中的内容,简单总结一下爬虫的基础知识,并且实际练习一下.详细内容请见:h ...

  9. Kafka 深入核心参数配置

    Kafka 真是一个异常稳定的组件,服务器上我们部署了 kafka_2.11-1.0.1 版本的 kafka 除了几次计算时间太长触发了 rebalance 以外,基本没有处理过什么奇怪的问题. 但是 ...

  10. 《挑战30天C++入门极限》对C++递增(增量)运算符重载的思考

        对C++递增(增量)运算符重载的思考 在前面的章节中我们已经接触过递增运算符的重载,那时候我们并没有区分前递增与后递增的差别,在通常情况下我们是分别不出++a与a++的差别的,但的确他们直接是 ...