在机器学习中,导致overfitting的原因之一是noise,这个noise可以分为两种,即stochastic noise,随机噪声来自数据产生过程,比如测量误差等,和deterministic noise,确定性噪声来自added complexity,即model too complex。这两种类型的造成来源不同,但是对于学习的影响是相似的,large noise总会导致overfitting。


This is a very subtle question!

The most important thing to realize is that in learning, H is fixed and D is given, and so can be assumed fixed. Now we can ask, what is going on in this learning scenario. Here is what we can say:

i) If there is stochastic noise with ‘magnitude’ σ2, then you are in trouble.

ii) If there deterministic noise then you are in trouble.

The stochastic noise can be viewed as one part of the data generation process (eg. measurement errors). The deterministic noise can similarly be viewed as another part of the data generation process, namely f. The deterministic and stochastic noise are fixed. In your analogy, you can increase the stochastic noise by increasing the noise variance and you get into deeper trouble. Similarly, you can increase the deterministic noise by making f more complex and you will get into deeper trouble.

I just need to tell you what ‘trouble’ means. Well, we actually use another word instead of ‘trouble’ - overfitting.

This means you may be likely to make an inferior choice over the superior choice because the inferior choice has lower in-sample error. Doing stuff that looks good in-sample that leads to disasters out-of-sample is the essence of overfitting. An example of this is trying to choose the regularization parameter. If you pick a lower regularization parameter, then you have lower in-sample error, but it leads to higher out-of-sample error - you picked the λ with lowerEinbut it gave higher Eout. We call that overfitting. Underfitting is just the name we give to the opposite process in the context of picking the regularization parameter. Once the regularization parameter gets too high, as you pick a higher λ you get both higher Einand higher Eout. It also turns out that this means you over regularized and obtained an over-simplistic g - i.e. you ‘underfitted’, you didn’t fit the data enough. The underfitting and overfitting are just terms. The substance of what is going on under the hood is how the deterministic and stochastic noise are affecting what you should and should not do in-sample.

Now let’s get back to the subtle part of your question. There is actually another way to decrease the deterministic noise - increase the complexity of H (the other way is to decrease the complexity of f which we discussed above). Now is where the difference with stochastic noise pops up. With stochastic noise, it either goes up or down; if down, then things get better. With deterministic noise, if you just tell me that it went down, I need to ask you how. Did your target function get simpler - if yes, then great, it is just as if the stochastic noise went down. If it is that your H got more complicated, then things get interesting. To understand what is going on, the Bias Variance decomposition helps (bottom of page 125 in the textbook).

Eout=σ2+bias+var

σ2is the direct impact of the stochastic noise. bias is the direct impact of the deterministic noise. The var term is interesting and is the indirect impact of the noise, through H. The var term is mostly controlled by the size of H in relation to the number of data points. So getting back to the point, if you make H more complex, you will decrease the det. noise (bias) but you will increase the var (its indirect impact). Usually the latter dominates (overfitting, not because of the direct impact of the noise, but because of its indirect impact) … unless you are in the underfitting regime when the former dominates.

上面一段主要摘自《learning from data》一书,主要说明的内容是overfitting的含义以及noise对于overfitting的效用。

下面是对overfitting的很好的总结:

VC维大=>模型复杂度高=>error in sample 小=>模型不够平滑=>generalization能力弱=>error out of sample大=>overfitting=>模型并没有卵用。

总的来说,deterministic noise是由于你选择的H中的最好的hypothesis h∗对于不在H中的function f进行估计时的差。在给定x后,这个deterministic noise就确定了。

deterministic function可用来生成伪随机数(pseudo-random generator)。

详细的论述可以参看《learning from data》


2015-8-27

艺少

stochastic noise and deterministic noise的更多相关文章

  1. Perlin Noise 及其应用

    Perlin Noise 可以用来表现自然界中无法用简单形状来表达的物体的形态,比如火焰.烟雾.表面纹路等.要生成 Perlin Noise 可以使用工具离线生成,也可以使用代码运行时生成.最简单常用 ...

  2. python perlin noise

    python 利用 noise 生成纹理. # -*- coding: utf-8 -*- """ Created on Mon Apr 23 20:04:41 2018 ...

  3. GraphicsLab Project 之 Curl Noise

    作者:i_dovelemon 日期:2020-04-25 主题:Perlin Noise, Curl Noise, Finite Difference Method 引言 最近在研究流体效果相关的模拟 ...

  4. 台大《机器学习基石》课程感受和总结---Part 1(转)

    期末终于过去了,看看别人的总结:http://blog.sina.com.cn/s/blog_641289eb0101dynu.html 接触机器学习也有几年了,不过仍然只是个菜鸟,当初接触的时候英文 ...

  5. 过度拟合(overfitting)

    我们之前解决过一个理论问题:机器学习能不能起作用?现在来解决另一个理论问题:过度拟合. 正如之前我们看到的,很多时候我们必须进行nonlinear transform.但是我们又无法确定Q的值.Q过小 ...

  6. 【Regularization】林轩田机器学习基石

    正则化的提出,是因为要解决overfitting的问题. 以Linear Regression为例:低次多项式拟合的效果可能会好于高次多项式拟合的效果. 这里回顾上上节nonlinear transf ...

  7. 【Hazard of Overfitting】林轩田机器学习基石

    首先明确了什么是Overfitting 随后,用开车的例子给出了Overfitting的出现原因 出现原因有三个: (1)dvc太高,模型过于复杂(开车开太快) (2)data中噪声太大(路面太颠簸) ...

  8. 过拟合产生的原因(Root of Overfitting)

    之前在<过拟合和欠拟合(Over fitting & Under fitting)>一文中简要地介绍了过拟合现象,现在来详细地分析一下过拟合产生的原因以及相应的解决办法. 过拟合产 ...

  9. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

随机推荐

  1. 【MongoDB】在C#中使用

    一.MongoClient类 在2.10.0版本中引入了MongoClient类,同时在其API中也说明了Mongo类会在将来的版本中被MongoClient替换(Note: This class h ...

  2. zabbix的历史数据存储到elasticsearch中

    基本配置项 https://www.jianshu.com/p/bffca8128e8f 官方说这个实验性的功能支持es的版本是5.0.x - > 6.1.x,如果使用早期或更高版本的Elast ...

  3. phpize是干嘛的

    安装php(fastcgi模式)的时候,常常有这样一句命令:/usr/local/webserver/php/bin/phpize一.phpize是干嘛的?phpize是什么东西呢?php官方的说明: ...

  4. USACO10FEB]慢下来Slowing down dfs序 线段树

    [USACO10FEB]慢下来Slowing down 题面 洛谷P2982 本来想写树剖来着 暴力数据结构直接模拟,每头牛回到自己的农场后,其子树下的所有牛回到农舍时,必定会经过此牛舍,即:每头牛回 ...

  5. Uoj #35. 后缀排序(后缀数组)

    35. 后缀排序 统计 描述 提交 自定义测试 这是一道模板题. 读入一个长度为 nn 的由小写英文字母组成的字符串,请把这个字符串的所有非空后缀按字典序从小到大排序,然后按顺序输出后缀的第一个字符在 ...

  6. Vim初学

    实现G++编译 1,首先下载安装MinGW,下载地址在http://sourceforge.net/projects/mingw/.这个是边下载边安装的,下载完成即安装完成.我的安装目录是G:\Min ...

  7. 2019强网杯web upload writeup及关键思路

    <?phpnamespace app\web\controller; class Profile{    public $checker;    public $filename_tmp;    ...

  8. ubuntu 14.04 系统配置磁盘,CPU,内存,硬盘信息查看

    Linux查看物理CPU个数.核数.逻辑CPU个数# 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 查看分区磁盘 ...

  9. ICEM-interface相关操作

    原视频下载地址: https://pan.baidu.com/s/14Tx-eYPccvhrg5wrg7gYvw 密码: 8fdp

  10. lol英雄时刻

    2019.5.30 翻出了当年人生中第一次LOL五杀截图...我用佐伊拿五杀了! 第一次五杀超激动的